Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 94
Filtrar
1.
Oncogene ; 43(21): 1608-1619, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38565943

RESUMEN

Cancer cells employ adaptive mechanisms to survive various stressors, including genotoxic drugs. Understanding the factors promoting survival is crucial for developing effective treatments. In this study, we unveil a previously unexplored long non-coding RNA, JUNI (JUN-DT, LINC01135), which is upregulated by genotoxic drugs through the activation of stress-activated MAPKs, JNK, and p38 and consequently exerts positive control over the expression of its adjacent gene product c-Jun, a well-known oncoprotein, which transduces signals to multiple transcriptional outputs. JUNI regulates cellular migration and has a crucial role in conferring cellular resistance to chemotherapeutic drugs or UV radiation. Depletion of JUNI markedly increases the sensitivity of cultured cells and spheroids to chemotherapeutic agents. We identified 57 proteins interacting with JUNI. The activity of one of them the MAPK phosphatase and inhibitor, DUSP14, is counteracted by JUNI, thereby, facilitating efficient JNK phosphorylation and c-Jun induction when cells are exposed to UV radiation. The antagonistic interplay with DUSP14 contributes not only to c-Jun induction but also augments the survival of UV-exposed cells. In summary, we introduce JUNI as a novel stress-inducible regulator of c-Jun, positioning it as a potential target for enhancing the sensitivity of cancer cells to chemotherapy.


Asunto(s)
Movimiento Celular , Supervivencia Celular , Fosfatasas de Especificidad Dual , ARN Largo no Codificante , Humanos , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Fosfatasas de Especificidad Dual/metabolismo , Fosfatasas de Especificidad Dual/genética , Movimiento Celular/genética , Supervivencia Celular/efectos de la radiación , Supervivencia Celular/genética , Supervivencia Celular/efectos de los fármacos , Proteínas Proto-Oncogénicas c-jun/metabolismo , Proteínas Proto-Oncogénicas c-jun/genética , Línea Celular Tumoral , Rayos Ultravioleta/efectos adversos , Sistema de Señalización de MAP Quinasas/genética , Regulación Neoplásica de la Expresión Génica , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo
2.
Methods Mol Biol ; 2743: 1-19, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38147205

RESUMEN

Nonsense mutations generating premature termination codons (PTCs) in various genes are frequently associated with somatic cancer and hereditary human diseases since PTCs commonly generate truncated proteins with defective or altered function. Induced translational readthrough during protein biosynthesis facilitates the incorporation of an amino acid at the position of a PTC, allowing the synthesis of a complete protein. This may evade the pathological effect of the PTC mutation and provide new therapeutic opportunities. Several protein tyrosine phosphatases (PTPs) genes are targeted by PTC in human disease, the tumor suppressor PTEN being the more prominent paradigm. Here, using PTEN and laforin as examples, two PTPs from the dual-specificity phosphatase subfamily, we describe methodologies to analyze in silico the distribution and frequency of pathogenic PTC in PTP genes. We also summarize laboratory protocols and technical notes to study the induced translational readthrough reconstitution of the synthesis of PTP targeted by PTC in association with disease in cellular models.


Asunto(s)
Codón sin Sentido , Proteínas Tirosina Fosfatasas , Humanos , Mutación , Proteínas Tirosina Fosfatasas/genética , Fosfatasas de Especificidad Dual , Biosíntesis de Proteínas
3.
PLoS One ; 18(8): e0289369, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37527256

RESUMEN

PTEN is a major tumor suppressor gene frequently mutated in human tumors, and germline PTEN gene mutations are the molecular diagnostic of PTEN Hamartoma Tumor Syndrome (PHTS), a heterogeneous disorder that manifests with multiple hamartomas, cancer predisposition, and neurodevelopmental alterations. A diversity of translational and splicing PTEN isoforms exist, as well as PTEN C-terminal truncated variants generated by disease-associated nonsense mutations. However, most of the available anti-PTEN monoclonal antibodies (mAb) recognize epitopes at the PTEN C-terminal tail, which may introduce a bias in the analysis of the expression of PTEN isoforms and variants. We here describe the generation and precise characterization of anti-PTEN mAb recognizing the PTEN C2-domain, and their use to monitor the expression and function of PTEN isoforms and PTEN missense and nonsense mutations associated to disease. These anti-PTEN C2 domain mAb are suitable to study the pathogenicity of PTEN C-terminal truncations that retain stability and function but have lost the PTEN C-terminal epitopes. The use of well-defined anti-PTEN mAb recognizing distinct PTEN regions, as the ones here described, will help to understand the deleterious effects of specific PTEN mutations in human disease.


Asunto(s)
Codón sin Sentido , Neoplasias , Humanos , Dominios C2 , Fosfohidrolasa PTEN/genética , Fosfohidrolasa PTEN/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Mutación de Línea Germinal , Epítopos , Anticuerpos Monoclonales/genética
5.
Sci Rep ; 13(1): 7339, 2023 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-37147361

RESUMEN

Renal cancer cells constitute a paradigm of tumor cells with a glycolytic reprogramming which drives metabolic alterations favouring cell survival and transformation. We studied the expression and activity of pyruvate dehydrogenase kinases (PDK1-4), key enzymes of the energy metabolism, in renal cancer cells. We analysed the expression, subcellular distribution and clinicopathological correlations of PDK1-4 by immunohistochemistry of tumor tissue microarray samples from a cohort of 96 clear cell renal cell carcinoma (ccRCC) patients. Gene expression analysis was performed on whole tumor tissue sections of a subset of ccRCC samples. PDK2 and PDK3 protein expression in tumor cells correlated with lower patient overall survival, whereas PDK1 protein expression correlated with higher patient survival. Gene expression analysis revealed molecular association of PDK2 and PDK3 expression with PI3K signalling pathway, as well as with T cell infiltration and exhausted CD8 T cells. Inhibition of PDK by dichloroacetate in human renal cancer cell lines resulted in lower cell viability, which was accompanied by an increase in pAKT. Together, our findings suggest a differential role for PDK enzymes in ccRCC progression, and highlight PDK as actionable metabolic proteins in relation with PI3K signalling and exhausted CD8 T cells in ccRCC.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Humanos , Piruvato Deshidrogenasa Quinasa Acetil-Transferidora , Proteínas Serina-Treonina Quinasas/genética , Carcinoma de Células Renales/genética , Neoplasias Renales/genética , Pronóstico , Oxidorreductasas , Piruvatos , Fosfatidilinositol 3-Quinasas
6.
Eur J Hum Genet ; 31(5): 568-577, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36543932

RESUMEN

Heterozygous germline mutations in PTEN gene predispose to hamartomas and tumors in different tissues, as well as to neurodevelopmental disorders, and define at genetic level the PTEN Hamartoma Tumor Syndrome (PHTS). The major physiologic role of PTEN protein is the dephosphorylation of phosphatidylinositol (3,4,5)-trisphosphate (PIP3), counteracting the pro-oncogenic function of phosphatidylinositol 3-kinase (PI3K), and PTEN mutations in PHTS patients frequently abrogate PTEN PIP3 catalytic activity. PTEN also displays non-canonical PIP3-independent functions, but their involvement in PHTS pathogeny is less understood. We have previously identified and described, at clinical and genetic level, novel PTEN variants of unknown functional significance in PHTS patients. Here, we have performed an extensive functional characterization of these PTEN variants (c.77 C > T, p.(Thr26Ile), T26I; c.284 C > G, p.(Pro95Arg), P95R; c.529 T > A, p.(Tyr177Asn), Y177N; c.781 C > G, p.(Gln261Glu), Q261E; c.829 A > G, p.(Thr277Ala), T277A; and c.929 A > G, p.(Asp310Gly), D310G), including cell expression levels and protein stability, PIP3-phosphatase activity, and subcellular localization. In addition, caspase-3 cleavage analysis in cells has been assessed using a C2-domain caspase-3 cleavage-specific anti-PTEN antibody. We have found complex patterns of functional activity on PTEN variants, ranging from loss of PIP3-phosphatase activity, diminished protein expression and stability, and altered nuclear/cytoplasmic localization, to intact functional properties, when compared with PTEN wild type. Furthermore, we have found that PTEN cleavage at the C2-domain by the pro-apoptotic protease caspase-3 is diminished in specific PTEN PHTS variants. Our findings illustrate the multifaceted molecular features of pathogenic PTEN protein variants, which could account for the complexity in the genotype/phenotype manifestations of PHTS patients.


Asunto(s)
Síndrome de Hamartoma Múltiple , Fosfohidrolasa PTEN , Humanos , Caspasa 3/genética , Mutación de Línea Germinal , Síndrome de Hamartoma Múltiple/genética , Fosfatidilinositol 3-Quinasas/genética , Fosfohidrolasa PTEN/genética , Fosfohidrolasa PTEN/metabolismo
7.
Transl Oncol ; 27: 101580, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36327699

RESUMEN

Neuroblastoma is one of the most aggressive cancer forms in children, with highly heterogenous clinical manifestations ranging from spontaneous regression to high metastatic capacity. High-risk neuroblastoma has the highest mortality rates of all pediatric cancers, highlighting the urgent need for effective novel therapeutic interventions. B7-H3 immune checkpoint protein is highly expressed in neuroblastoma, and it is involved in oncogenic signaling, tumor cell plasticity, and drug resistance. Immunotherapies based on immune checkpoint inhibition have improved patient survival in several human cancers, and recent reports provide preclinical evidence on the benefits of targeting B7-H3 in neuroblastoma, with emphasis on novel CAR T/NK-cell approaches. Here, we summarize the current status of neuroblastoma targeted therapies, with a focus on B7-H3 as a promising novel immunoregulatory therapeutic target for high-risk neuroblastoma.

8.
Pathol Res Pract ; 241: 154243, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36481650

RESUMEN

Prostate cancer diagnosis and early stratification is an important aspect to avoid undertreatment of high-risk prostate cancer patients. Major Vault Protein (MVP) has been proposed as a prognostic biomarker in prostate cancer. PTEN and the immune checkpoint protein B7-H3 interact with MVP and are important in prostate cancer progression and therapy response. We evaluated the expression of MVP by immunohistochemistry of tissue microarray samples from a retrospective cohort consisting of 119 prostate cancer patients. We correlated the protein expression of MVP with clinicopathological characteristics, and protein expression of androgen receptor (AR), PTEN, immune checkpoint proteins B7-H3 and PD-L1. We found MVP to be expressed in 53 % of prostate tumors, and correlated positively with biochemical recurrence (ρ = 0.211/p = 0.021). Furthermore, we found positive correlation of MVP expression with expression of AR (ρ = 0.244/p = 0.009) and the immune checkpoint protein B7-H3 (ρ = 0.200/p = 0.029), but not with PD-L1 (ρ = 0.152/p = 0.117) or PTEN expression (ρ = - 0.034/p = 0.721). Our findings support the notion that expression of MVP is associated with poor prognosis in prostate cancer. The correlation between MVP and immune checkpoint protein B7-H3 in prostate cancer suggests a role for MVP in immunoregulation and drug resistance.


Asunto(s)
Antígeno B7-H1 , Neoplasias de la Próstata , Masculino , Humanos , Antígeno B7-H1/metabolismo , Proteínas de Punto de Control Inmunitario , Estudios Retrospectivos , Receptores Androgénicos , Neoplasias de la Próstata/patología , Pronóstico
9.
Front Oncol ; 12: 873516, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35692804

RESUMEN

Background: Pyruvate dehydrogenase (PDH) complex converts pyruvate into acetyl-CoA by pyruvate decarboxylation, which drives energy metabolism during cell growth, including prostate cancer (PCa) cell growth. The major catalytic subunit of PDH, PDHA1, is regulated by phosphorylation/dephosphorylation by pyruvate dehydrogenase kinases (PDKs) and pyruvate dehydrogenase phosphatases (PDPs). There are four kinases, PDK1, PDK2, PDK3 and PDK4, which can phosphorylate and inactivate PDH; and two phosphatases, PDP1 and PDP2, that dephosphorylate and activate PDH. Methods: We have analyzed by immunohistochemistry the expression and clinicopathological correlations of PDHA1, PDP1, PDP2, PDK1, PDK2, PDK3, and PDK4, as well as of androgen receptor (AR), in a retrospective PCa cohort of patients. A total of 120 PCa samples of representative tumor areas from all patients were included in tissue microarray (TMA) blocks for analysis. In addition, we studied the subcellular localization of PDK2 and PDK3, and the effects of the PDK inhibitor dichloroacetate (DCA) in the growth, proliferation, and mitochondrial respiration of PCa cells. Results: We found heterogeneous expression of the PDH complex components in PCa tumors. PDHA1, PDP1, PDK1, PDK2, and PDK4 expression correlated positively with AR expression. A significant correlation of PDK2 immunostaining with biochemical recurrence and disease-free survival was revealed. In PCa tissue specimens, PDK2 displayed cytoplasmic and nuclear immunostaining, whereas PDK1, PDK3 and PDK4 showed mostly cytoplasmic staining. In cells, ectopically expressed PDK2 and PDK3 were mainly localized in mitochondria compartments. An increase in maximal mitochondrial respiration was observed in PCa cells upon PDK inhibition by DCA, in parallel with less proliferative capacity. Conclusion: Our findings support the notion that expression of specific PDH complex components is related with AR signaling in PCa tumors. Furthermore, PDK2 expression associated with poor PCa prognosis. This highlights a potential for PDH complex components as targets for intervention in PCa.

10.
Cancers (Basel) ; 14(2)2022 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-35053583

RESUMEN

Medulloblastoma is the primary malignant tumor of the Central Nervous System (CNS) most common in pediatrics. We present here, the histological, molecular, and functional analysis of a cohort of 88 pediatric medulloblastoma tumor samples. The WNT-activated subgroup comprised 10% of our cohort, and all WNT-activated patients had exon 3 CTNNB1 mutations and were immunostained for nuclear ß-catenin. One novel heterozygous CTNNB1 mutation was found, which resulted in the deletion of ß-catenin Ser37 residue (ΔS37). The ΔS37 ß-catenin variant ectopically expressed in U2OS human osteosarcoma cells displayed higher protein expression levels than wild-type ß-catenin, and functional analysis disclosed gain-of-function properties in terms of elevated TCF/LEF transcriptional activity in cells. Our results suggest that the stabilization and nuclear accumulation of ΔS37 ß-catenin contributed to early medulloblastoma tumorigenesis.

11.
Front Cell Dev Biol ; 10: 1051311, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36755664

RESUMEN

Protein tyrosine phosphatases, together with protein tyrosine kinases, control many molecular signaling steps that control life at cellular and organismal levels. Impairing alterations in the genes encoding the involved proteins is expected to profoundly affect the quality of life-if compatible with life at all. Here, we review the current knowledge on the effects of germline variants that have been reported for genes encoding a subset of the protein tyrosine phosphatase superfamily; that of the thirty seven classical members. The conclusion must be that the newest genome research tools produced an avalanche of data that suggest 'guilt by association' for individual genes to specific disorders. Future research should face the challenge to investigate these accusations thoroughly and convincingly, to reach a mature genotype-phenotype map for this intriguing protein family.

13.
Front Cell Dev Biol ; 9: 811297, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34957126

RESUMEN

Neuroblastoma is a type of cancer intimately related with early development and differentiation of neuroendocrine cells, and constitutes one of the pediatric cancers with higher incidence and mortality. Protein tyrosine phosphatases (PTPs) are key regulators of cell growth and differentiation by their direct effect on tyrosine dephosphorylation of specific protein substrates, exerting major functions in the modulation of intracellular signaling during neuron development in response to external cues driving cell proliferation, survival, and differentiation. We review here the current knowledge on the role of PTPs in neuroblastoma cell growth, survival, and differentiation. The potential of PTPs as biomarkers and molecular targets for inhibition in neuroblastoma therapies is discussed.

14.
Cancers (Basel) ; 13(22)2021 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-34830803

RESUMEN

(Pro)renin receptor (PRR) is being investigated in several malignancies as it activates pathogenic pathways that contribute to cell proliferation, immunosuppressive microenvironments, and acquisition of aggressive neoplastic phenotypes. Its implication in urothelial cancer (UC) has not been evaluated so far. We retrospectively evaluate the prognostic role of PRR expression in a series of patients with invasive UC treated with radical cystectomy and other clinical and histopathological parameters including p53, markers of immune-checkpoint inhibition, and basal and luminal phenotypes evaluated by tissue microarray. Cox regression analyses using stepwise selection evaluated candidate prognostic factors and disease-specific survival. PRR was expressed in 77.3% of the primary tumors and in 70% of positive lymph nodes. PRR expression correlated with age (p = 0.006) and was associated with lower preoperatively hemoglobin levels. No other statistical association was evidenced with clinical and pathological variables (gender, ASA score, Charlson comorbidity index, grade, pT, pN) or immunohistochemical expressions evaluated (CK20, GA-TA3, CK5/6, CD44, PD-L1, PD-1, B7-H3, VISTA, and p53). PRR expression in primary tumors was associated with worse survival (log-rank, p = 0.008). Cox regression revealed that PRR expression (HR 1.85, 95% CI 1.22-2.8), pT (HR 7.02, 95% CI 2.68-18.39), pN (HR 2.3, 95% CI 1.27-4.19), and p53 expression (HR 1.95, 95% CI 1.1-3.45) were independent prognostic factors in this series. In conclusion, we describe PRR protein and its prognostic role in invasive UC for the first time. Likely mechanisms involved are MAPK/ERK activation, Wnt/ß-catenin signaling, and v-ATPAse function.

15.
Prostate ; 81(12): 838-848, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34125445

RESUMEN

BACKGROUND: Novel immune checkpoint-based immunotherapies may benefit specific groups of prostate cancer patients who are resistant to other treatments. METHODS: We analyzed by immunohistochemistry the expression of B7-H3, PD-L1/B7-H1, and androgen receptor (AR) in tissue samples from 120 prostate adenocarcinoma patients treated with radical prostatectomy in Spain, and from 206 prostate adenocarcinoma patients treated with radical prostatectomy in Norway. RESULTS: B7-H3 expression correlated positively with AR expression and was associated with biochemical recurrence in the Spanish cohort, but PD-L1 expression correlated with neither of them. Findings for B7-H3 were validated in the Norwegian cohort, where B7-H3 expression correlated positively with Gleason grade, surgical margins, seminal vesicle invasion, and CAPRA-S risk group, and was associated with clinical recurrence. High B7-H3 expression in the Norwegian cohort was also consistent with positive AR expression. CONCLUSION: These results suggest distinct clinical relevance of the two immune checkpoint proteins PD-L1 and B7-H3 in prostate cancer. Our findings highlight B7-H3 as an actionable novel immune checkpoint protein in prostate cancer.


Asunto(s)
Antígenos B7/biosíntesis , Biomarcadores de Tumor/biosíntesis , Regulación Neoplásica de la Expresión Génica/fisiología , Proteínas de Punto de Control Inmunitario/biosíntesis , Neoplasias de la Próstata/metabolismo , Receptores Androgénicos/biosíntesis , Anciano , Antígenos B7/genética , Biomarcadores de Tumor/genética , Estudios de Cohortes , Bases de Datos Genéticas/tendencias , Estudios de Seguimiento , Humanos , Proteínas de Punto de Control Inmunitario/genética , Masculino , Persona de Mediana Edad , Noruega/epidemiología , Neoplasias de la Próstata/diagnóstico , Neoplasias de la Próstata/epidemiología , Receptores Androgénicos/genética , España/epidemiología , Resultado del Tratamiento
16.
Artículo en Inglés | MEDLINE | ID: mdl-33918362

RESUMEN

In this paper, we propose a vision of the role of parent/caregiver with children affected by a rare disease. This vision is rooted in data obtained from our own research; however, our analysis and interpretation of this data have been subsequently checked against existing theoretical models. The research aims to explore how parents who look after children with a rare disease experience their role as caregivers and how they assimilate their role identity in this task. Semi-structured interviews were performed with parents of 10 children, and a qualitative data analysis was conducted using grounded theory. We have identified ten main categories using a grounded theory approach: stress, disorientation, insecurity, isolation, faith, trust, attention, communication with professionals, private proactivity and public proactivity. Our results also show that when parents perceive a greater burden due to looking after a child with a rare disease, the result is a change in the usual parental role. In our contribution, we offer a general outline of how parents build a role identity centred on caring for a child with a rare disease. We posit that this role identity is the outcome of the parents' success or failure in gradually overcoming fear through love. We have conceptualized this process as navigating between love and fear.


Asunto(s)
Cuidadores , Enfermedades Raras , Niño , Miedo , Humanos , Amor , Relaciones Padres-Hijo , Investigación Cualitativa
17.
Mol Genet Metab Rep ; 26: 100710, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33552904

RESUMEN

Mutations in the MMADHC gene cause cobalamin D disorder (cblD), an autosomal recessive inborn disease with defects in intracellular cobalamin (cbl, vitamin B12) metabolism. CblD patients present methylmalonic aciduria (MMA), homocystinuria (HC), or combined MMA/HC, and usually suffer developmental delay and cognitive deficits. The most frequent MMADHC genetic alterations associated with disease generate MMADHC truncated proteins, in many cases due to mutations that create premature termination codons (PTC). In this study, we have performed a comprehensive and global characterization of MMADHC protein variants generated by all annotated MMADHC PTC mutations in cblD patients, and analyzed the potential of inducible translational PTC readthrough to reconstitute MMADHC biosynthesis. MMADHC protein truncation caused by disease-associated PTC differentially affected the alternative usage of translation initiation sites, protein abundance, and subcellular localization of MMADHC. Aminoglycoside compounds induced translational PTC readthrough of MMADHC truncated variants, allowing the biosynthesis of full-length MMADHC in a PTC-specific manner. Our results suggest that translational PTC readthrough-based interventions could complement current therapies for cblD patients carrying specific MMADHC PTC mutations.

18.
Hum Mutat ; 42(5): 551-566, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33600059

RESUMEN

The PTEN tumor suppressor gene is mutated with high incidence in tumors and in the germline of patients with cancer predisposition or with macrocephaly associated with autism. PTEN nonsense mutations generating premature termination codons (PTC) and producing nonfunctional truncated PTEN proteins are frequent in association with human disease. However, there are no studies addressing the restoration of full-length PTEN proteins from the PTC-mutated PTEN gene by translational readthrough. Here, we have performed a global translational and functional readthrough analysis of the complete collection of PTEN PTC somatic or hereditary mutations found in tumors or in the germline of patients (disease-associated PTEN PTCome), and we set standards for the analysis of the potential of readthrough functional reconstitution in disease-relevant genes. Our analysis indicates that prevalent pathogenic PTEN PTC mutations are susceptible to PTEN functional restoration in response to readthrough-inducing compounds. Comprehensive readthrough analyses of disease-associated PTComes will be valuable tools for the implementation of readthrough-based precision interventions in specific groups of patients.


Asunto(s)
Codón sin Sentido , Biosíntesis de Proteínas , Codón sin Sentido/genética , Codón de Terminación/genética , Humanos , Fosfohidrolasa PTEN/genética
19.
J Pers Med ; 10(4)2020 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-33291528

RESUMEN

The clinical parameters and the histological and immunohistochemical findings of a prospective protocolized series of 27 prostate carcinoma patients with oligometastatic disease followed homogeneously were analyzed. Lymph nodes (81.5%) and bones (18.5%) were the only metastatic sites. Local control after metastatic directed treatment was achieved in 22 (81.5%) patients. A total of 8 (29.6%) patients developed castration-resistant prostate cancer. Seventeen (63%) patients presented with non-organ confined disease. The Gleason index 8-10 was the most frequently observed (12 cases, 44.4%) combined grade. Positive immunostainings were detected with androgen receptor (100%), PGP 9.5 (74%), ERG (40.7%), chromogranin A (29.6%), and synaptophysin (18.5%) antibodies. The Ki-67 index value > 5% was observed in 15% of the cases. L1CAM immunostaining was negative in all cases. Fisher exact test showed that successful local control of metastases was associated to mild inflammation, organ confined disease, Ki-67 index < 5%, and Gleason index 3 + 3. A castration resistant status was associated with severe inflammation, atrophy, a Gleason index higher than 3 + 3, Ki-67 index ≥ 5%, and positive PGP 9.5, chromogranin A, and synaptophysin immunostainings. In conclusion, oligometastatic prostate adenocarcinoma does not have a specific clinical-pathologic profile. However, some histologic and immunohistochemical parameters of routine use may help with making therapeutic decisions.

20.
J Clin Med ; 9(4)2020 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-32252256

RESUMEN

Neuroimaging studies describing brain circuits' alterations in cobalamin (vitamin B12)-deficient patients are limited and have not been carried out in patients with inborn errors of cobalamin metabolism. The objective of this study was to assess brain functionality and brain circuit alterations in a patient with an ultra-rare inborn error of cobalamin metabolism, methylmalonic aciduria, and homocystinuria due to cobalamin D disease, as compared with his twin sister as a healthy control (HC). We acquired magnetic resonance imaging (including structural, functional, and diffusion images) to calculate brain circuit abnormalities and combined these results with the scores after a comprehensive neuropsychological evaluation. As compared with HC, the patient had severe patterns of damage, such as a 254% increment of ventricular volume, pronounced subcortical and cortical atrophies (mainly at striatum, cingulate cortex, and precuneus), and connectivity alterations at fronto-striato-thalamic circuit, cerebellum, and corpus callosum. In agreement with brain circuit alterations, cognitive deficits existed in attention, executive function, inhibitory control, and mental flexibility. This is the first study that provides the clinical, genetic, neuroanatomical, neuropsychological, and psychosocial characterization of a patient with the cobalamin D disorder, showing functional alterations in central nervous system motor tracts, thalamus, cerebellum, and basal ganglia, that, as far as we know, have not been reported yet in vitamin B12-related disorders.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA