Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Open Vet J ; 14(3): 885-894, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38682140

RESUMEN

Background: The study employs finite element analysis to investigate stress distribution in the radius of toy poodles after screw removal. The examination focuses on the biomechanical implications of varied screw hole configurations using 1.5 and 2.0-mm locking compression plates (LCPs) with notched head T-Plates. Aim: To provide a noninvasive approach to analyzing the immediate consequences of screw removal from the radius bone in toy poodles. Specifically, it explores the impact of varied plate designs and screw arrangements on stress distribution within the forelimb bones. Methods: The study constructs a three-dimensional bone model of the toy poodle's forelimb based on computed tomography (CT) images. Simulations were designed to replicate jumping and landing from a 40 cm height, comparing stress distribution in the radius post-screw removal. Results: The analysis reveals significant variations in stress distribution patterns between the two LCPs. The radius implanted with the 2.0-mm LCP displays a uniform stress distribution, contrasting with the 1.5-mm plates. Localized stress concentration is observed around the screw holes, while trabecular bone regions near the screw holes exhibit lower stress levels. Conclusion: The study highlights the plate designs and screw configurations that affect bone stress in toy poodle forelimbs post-screw removal. The findings provide valuable insights for veterinarians, aiding informed decisions in veterinary orthopedic practices.


Asunto(s)
Placas Óseas , Tornillos Óseos , Análisis de Elementos Finitos , Animales , Tornillos Óseos/veterinaria , Tornillos Óseos/efectos adversos , Placas Óseas/veterinaria , Fenómenos Biomecánicos , Estrés Mecánico , Radio (Anatomía)/cirugía , Miembro Anterior , Tomografía Computarizada por Rayos X/veterinaria
2.
J Vet Med Sci ; 86(5): 575-583, 2024 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-38556325

RESUMEN

Fractures occurring in the distal radius and ulna of toy breed dogs pose distinctive challenges for veterinary practitioners, requiring specialized treatment approaches primarily based on anatomical features. Finite Element Analysis (FEA) was applied to conduct numerical experiments to determine stress distribution across the bone. This methodology offers an alternative substitute for directly investigating these phenomena in living dog experiments, which could present ethical obstacles. A three-dimensional bone model of the metacarpal, carpal, radius, ulna, and humerus was reconstructed from Computed Tomography (CT) images of the toy poodle and dachshund forelimb. The model was designed to simulate the jumping and landing conditions from a vertical distance of 40 cm to the ground within a limited timeframe. The investigation revealed considerable variations in stress distribution patterns between the radius and ulna of toy poodles and dachshunds, indicating notably elevated stress levels in toy poodles compared to dachshunds. In static and dynamic stress analysis, toy poodles exhibit peak stress levels at the distal radius and ulna. The Von Mises stresses for toy poodles reach 90.07 MPa (static) and 1,090.75 MPa (dynamic) at the radius and 1,677.97 MPa (static) and 1,047.98 MPa (dynamic) at the ulna. Conversely, dachshunds demonstrate lower stress levels for 5.39 MPa (static) and 231.79 MPa (dynamic) at the radius and 390.56 MPa (static) and 513.28 MPa (dynamic) at the ulna. The findings offer valuable insights for modified treatment approaches in managing fractures in toy breed dogs, optimizing care and outcomes.


Asunto(s)
Análisis de Elementos Finitos , Fracturas del Radio , Fracturas del Cúbito , Animales , Perros/fisiología , Fracturas del Cúbito/veterinaria , Fracturas del Cúbito/diagnóstico por imagen , Fracturas del Radio/veterinaria , Fenómenos Biomecánicos , Miembro Anterior/fisiología , Tomografía Computarizada por Rayos X/veterinaria , Estrés Mecánico
3.
PLoS One ; 19(1): e0292453, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38166027

RESUMEN

The patellar tendon (PT) is crucial for maintaining stability and facilitating movement in the stifle joint. Elastography has been recognized as a prominent method for evaluating PT properties in humans and dogs. The utilization of oscillation methods in canine studies remains limited despite their extensive documentation in human studies. Our study represents the first effort to quantitatively assess and compare the effects of muscle relaxant on the biomechanical and viscoelastic characteristics of the PT at varying stifle angles in living dogs. Five healthy female beagles were used in this study. Biomechanical (tone, stiffness, and decrement) and viscoelastic (relaxation time and creep) properties of the PT were measured using MyotonPRO (Myoton Ltd, Estonia) prior to and following administration of rocuronium (0.5 mg/kg/body weight) at normal, extended, and flexed positions. Rocuronium was selected for its safety, controllability, and widespread clinical use in veterinary anesthesia. Two-way analysis of variance showed that tone, stiffness, and decrement were significantly higher (P < 0.001) in the control group than in the muscle relaxation group. At the same time, relaxation time and creep were significantly lower (P < 0.001) in the control group than in the muscle relaxation group. The findings indicate that stifle angle position and muscle rexalant administration fundamentally alter the biomechanical loading conditions of the PT, leading to changes in its viscoelastic properties. Therefore, this novel quantitative data could benefit clinical settings that necessitate accurate and objective methods for risk identification and monitoring PT biomechanics in dogs.


Asunto(s)
Bloqueo Neuromuscular , Ligamento Rotuliano , Perros , Animales , Femenino , Humanos , Rodilla de Cuadrúpedos/fisiología , Ligamento Rotuliano/fisiología , Rocuronio/farmacología , Articulación de la Rodilla , Fenómenos Biomecánicos
4.
Vet World ; 13(12): 2635-2642, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33487981

RESUMEN

BACKGROUND AND AIM: Calcium phosphate bioceramics have been used for at least a decade, and many investigations have focused on the use of hydroxyapatite (HA) derivative in the regeneration of bone defects. Biphasic calcium phosphate (BCP) is a biomaterial composed of HA and beta-tricalcium phosphate (BCP), with a structure similar to bone. The aim of the study was to determine the influence of the BCP/alginate scaffold on tissue growth, blood, the lungs, and the electrical activity of the heart during bone healing in the tibia of pig. MATERIALS AND METHODS: Three pigs were implanted with BCP/alginate scaffolds in the tibias. Pigs were acclimatized and treated with antibiotics and anthelminthic drugs 14 days before implantation. Each pig was implanted with a BCP/alginate scaffold in the right tibia and a defect without the implant was made in the left tibia as the control. Radiographic images of the tibia were captured 0, 7, 30, and 60 days after the operation. Erythrograms, radiography of the lungs, and electrocardiogram (ECG) recordings were done 0, 30, and 60 days after the operation. RESULTS: Radiographic evaluations showed that the implant and peri-implant density of BCP decreased throughout the process of bone healing. The erythrogram profile indicated that a substantial amount of time (60 days) was required to adapt and return to pre-operative conditions. No significant differences in ECG recordings or pulmonary radiography were detected. CONCLUSION: The BCP/alginate scaffold did not induce a faster recovery rate from the bone defect compared to the control with no implant. However, the BCP/alginate scaffold was biodegradable, bioresorbable, and non-toxic.

5.
Vet World ; 12(4): 565-571, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31190712

RESUMEN

AIM: This study was conducted to assess the effect of ventilators on the lung profile of piglets in the hypovolemic shock before and after the excessive resuscitation of the crystalloid fluid. MATERIALS AND METHODS: Five male piglets were used in this study as the models of shock, and there are four phases of treatment: Stabilization, shock of bleeding, normovolemic resuscitation, and hypervolemic resuscitation. The application of mechanical ventilation to patients who suspected of having lung injury may worsen the patient's conditions. The purpose of this study was to set the ventilator with the set of positive end-expiratory pressure (PEEP) of 5 cm H2O, thefraction of inspired oxygen (FiO2) of 0.5, and the inspiration: expiration (I: E) ratio of 1:2, which was applied from the stabilization phase. The shock induction was performed by removing the blood until the mean arterial pressure decreasing by 20% from the stabilization. The solution of NaCl 0.9% was used for the normovolemic and hypervolemic resuscitation. The parameter of observation consisted of extravascular lung water index (EVLWI) and pulmonary vascular permeability index (PVPI) on pulse contour cardiac output 2 and exhaled tidal volume (VTE), peak inspiratory pressure (PIP), and respiratory rate (RR) on ventilators. RESULTS: EVLWI does not indicate pulmonary edema. A significant decrease in VTE without any significant alterations in EVLWI, PIP, and RR has indicated the shallow breathing in the shock condition. Therefore, the PVPI parameter cannot be used as a parameter for capillary permeability since its formulation does not reinforce the results of data in the shock condition. The set of the ventilator may prevent the increase of EVLWI, and the uses of ventilators do not worsen the patient's conditions during the crystalloid resuscitation. CONCLUSION: The use of mechanical ventilator as the support does not worsen the hypovolemic condition and is safe to use as long as the lung profile is not indicated to have lung injury.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA