Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Am J Cancer Res ; 14(2): 562-584, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38455403

RESUMEN

Previous studies reported that alternating electric fields (EFs) in the intermediate frequency (100-300 kHz) and low intensity (1-3 V/cm) regime - termed "Tumor Treating Fields" (TTFields) - have a specific, anti-proliferative effect on glioblastoma multiforme (GBM) cells. However, the mechanism(s) of action remain(s) incompletely understood, hindering the clinical adoption of treatments based on TTFields. To advance the study of such treatment in vitro, we developed an inductive device to deliver EFs to cell cultures which improves thermal and osmolar regulation compared to prior devices. Using this inductive device, we applied continuous, 200 kHz electromagnetic fields (EMFs) with a radial EF amplitude profile spanning 0-6.5 V/cm to cultures of primary rat astrocytes and several human GBM cell lines - U87, U118, GSC827, and GSC923 - for a duration of 72 hours. Cell density was assessed via segmented pixel densities from GFP expression (U87, U118) or from staining (astrocytes, GSC827, GSC923). Further RNA-Seq analyses were performed on GSC827 and GSC923 cells. Treated cultures of all cell lines exhibited little to no change in proliferation at lower EF amplitudes (0-3 V/cm). At higher amplitudes (> 4 V/cm), different effects were observed. Apparent cell densities increased (U87), decreased (GSC827, GSC923), or showed little change (U118, astrocytes). RNA-Seq analyses on treated and untreated GSC827 and GSC923 cells revealed differentially expressed gene sets of interest, such as those related to cell cycle control. Up- and down-regulation, however, was not consistent across cell lines nor EF amplitudes. Our results indicate no consistent, anti-proliferative effect of 200 kHz EMFs across GBM cell lines and thus contradict previous in vitro findings. Rather, effects varied across different cell lines and EF amplitude regimes, highlighting the need to assess the effect(s) of TTFields and similar treatments on a per cell line basis.

2.
bioRxiv ; 2023 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-36789415

RESUMEN

Previous studies reported that alternating electric fields (EFs) in the intermediate frequency (100 - 300 kHz) and low intensity (1 - 3 V/cm) regime - termed "Tumor Treating Fields" (TTFields) - have a specific, anti-proliferative effect on glioblastoma multiforme (GBM) cells. However, the mechanism(s) of action remain(s) incompletely understood, hindering the clinical adoption of treatments based on TTFields. To advance the study of such treatment in vitro , we developed an inductive device to deliver EFs to cell cultures which improves thermal and osmolar regulation compared to prior devices. Using this inductive device, we applied continuous, 200 kHz electromagnetic fields (EMFs) with a radial EF amplitude profile spanning 0 - 6.5 V/cm to cultures of primary rat astrocytes and several human GBM cell lines - U87, U118, GSC827, and GSC923 - for a duration of 72 hours. Cell density was assessed via segmented pixel densities from GFP expression (U87, U118) or from staining (astrocytes, GSC827, GSC923). Further RNA-Seq analyses were performed on GSC827 and GSC923 cells. Treated cultures of all cell lines exhibited little to no change in proliferation at lower EF amplitudes (0 - 3 V/cm). At higher amplitudes (> 4 V/cm), different effects were observed. Apparent cell densities increased (U87), decreased (GSC827, GSC923), or showed little change (U118, astrocytes). RNA-Seq analyses on treated and untreated GSC827 and GSC923 cells revealed differentially expressed gene sets of interest, such as those related to cell cycle control. Up- and down-regulation, however, was not consistent across cell lines nor EF amplitudes. Our results indicate no consistent, anti-proliferative effect of 200 kHz EMFs across GBM cell lines and thus contradict previous in vitro findings. Rather, effects varied across different cell lines and EF amplitude regimes, highlighting the need to assess the effect(s) of TTFields and similar treatments on a per cell line basis.

3.
Biophys J ; 119(12): 2378-2390, 2020 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-33189686

RESUMEN

We have developed a novel, to our knowledge, in vitro instrument that can deliver intermediate-frequency (100-400 kHz), moderate-intensity (up to and exceeding 6.5 V/cm pk-pk) electric fields (EFs) to cell and tissue cultures generated using induced electromagnetic fields (EMFs) in an air-core solenoid coil. A major application of these EFs is as an emerging cancer treatment modality. In vitro studies by Novocure reported that intermediate-frequency (100-300 kHz), low-amplitude (1-3 V/cm) EFs, which they called "tumor-treating fields (TTFields)," had an antimitotic effect on glioblastoma multiforme (GBM) cells. The effect was found to increase with increasing EF amplitude. Despite continued theoretical, preclinical, and clinical study, the mechanism of action remains incompletely understood. All previous in vitro studies of "TTFields" have used attached, capacitively coupled electrodes to deliver alternating EFs to cell and tissue cultures. This contacting delivery method suffers from a poorly characterized EF profile and conductive heating that limits the duration and amplitude of the applied EFs. In contrast, our device delivers EFs with a well-characterized radial profile in a noncontacting manner, eliminating conductive heating and enabling thermally regulated EF delivery. To test and demonstrate our system, we generated continuous, 200-kHz EMF with an EF amplitude profile spanning 0-6.5 V/cm pk-pk and applied them to exemplar human thyroid cell cultures for 72 h. We observed moderate reduction in cell density (<10%) at low EF amplitudes (<4 V/cm) and a greater reduction in cell density of up to 25% at higher amplitudes (4-6.5 V/cm). Our device can be readily extended to other EF frequency and amplitude regimes. Future studies with this device should contribute to the ongoing debate about the efficacy and mechanism(s) of action of "TTFields" by better isolating the effects of EFs and providing access to previously inaccessible EF regimes.


Asunto(s)
Terapia por Estimulación Eléctrica , Glioblastoma , Conductividad Eléctrica , Campos Electromagnéticos , Glioblastoma/terapia , Humanos
4.
IEEE J Transl Eng Health Med ; 6: 4100112, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29552426

RESUMEN

Hemodynamic recording during interventional cardiovascular procedures is essential for procedural guidance, monitoring patient status, and collection of diagnostic information. Recent advances have made interventions guided by magnetic resonance imaging (MRI) possible and attractive in certain clinical scenarios. However, in the MRI environment, electromagnetic interference (EMI) can cause severe distortions and artifacts in acquired hemodynamic waveforms. The primary aim of this paper was to develop and validate a system to minimize EMI on electrocardiogram (ECG) and invasive blood pressure (IBP) signals. A system was developed which incorporated commercial MRI compatible ECG leads and pressure transducers, custom electronics, user interface, and adaptive signal processing. Measurements were made on pediatric patients (N = 6) during MRI-guided catheterization. Real-time interactive scanning, which is known to produce significant EMI due to fast gradient switching and varying imaging plane orientations, was selected for testing. The effectiveness of the adaptive algorithms was determined by measuring the reduction of noise peaks, amplitude of noise peaks, and false QRS triggers. During real-time gradient-intensive imaging sequences, peak noise amplitude was reduced by 80% and false QRS triggers were reduced to a median of 0. There was no detectable interference on the IBP channels. A hemodynamic recording system front-end was successfully developed and deployed, which enabled high-fidelity recording of ECG and IBP during MRI scanning. The schematics and assembly instructions are publicly available to facilitate implementation at other institutions. Researchers and clinicians are provided a critical tool in investigating and implementing MRI guided interventional cardiovascular procedures.

5.
Biomaterials ; 34(33): 8301-13, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23911071

RESUMEN

Modeling tumor growth in vitro is essential for cost-effective testing of hypotheses in preclinical cancer research. 3-D cell culture offers an improvement over monolayer culture for studying cellular processes in cancer biology because of the preservation of cell-cell and cell-ECM interactions. Oxygen transport poses a major barrier to mimicking in vivo environments and is not replicated in conventional cell culture systems. We hypothesized that we can better mimic the tumor microenvironment using a bioreactor system for controlling gas exchange in cancer cell cultures with silicone hydrogel synthetic vessels. Soft-lithography techniques were used to fabricate oxygen-permeable silicone hydrogel membranes containing arrays of micropillars. These membranes were inserted into a bioreactor and surrounded by basement membrane extract (BME) within which fluorescent ovarian cancer (OVCAR8) cells were cultured. Cell clusters oxygenated by synthetic vessels showed a ∼100µm drop-off to anoxia, consistent with in vivo studies of tumor nodules fed by the microvasculature. Oxygen transport in the bioreactor system was characterized by experimental testing with a dissolved oxygen probe and finite element modeling of convective flow. Our study demonstrates differing growth patterns associated with controlling gas distributions to better mimic in vivo conditions.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Microtecnología , Polímeros/química , Reactores Biológicos , Línea Celular Tumoral , Femenino , Humanos
6.
J Cogn Neurosci ; 22(6): 1299-318, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19413476

RESUMEN

We used fMRI to investigate the roles played by perilesional and contralesional cortical regions during language production in stroke patients with chronic aphasia. We applied comprehensive psycholinguistic analyses based on well-established models of lexical access to overt picture-naming responses, which were evaluated using a single trial design that permitted distinction between correct and incorrect responses on a trial-by-trial basis. Although both correct and incorrect naming responses were associated with left-sided perilesional activation, incorrect responses were selectively associated with robust right-sided contralesional activity. Most notably, incorrect responses elicited overactivation in the right inferior frontal gyrus that was not observed in the contrasts for patients' correct responses or for responses of age-matched control subjects. Errors were produced at slightly later onsets than accurate responses and comprised predominantly semantic paraphasias and omissions. Both types of errors were induced by pictures with greater numbers of alternative names, and omissions were also induced by pictures with late acquired names. These two factors, number of alternative names per picture and age of acquisition, were positively correlated with activation in left and right inferior frontal gyri in patients as well as control subjects. These results support the hypothesis that some right frontal activation may normally be associated with increasing naming difficulty, but in patients with aphasia, right frontal overactivation may reflect ineffective effort when left hemisphere perilesional resources are insufficient. They also suggest that contralesional areas continue to play a role--dysfunctional rather than compensatory--in chronic aphasic patients who have experienced a significant degree of recovery.


Asunto(s)
Afasia/fisiopatología , Lóbulo Frontal/fisiopatología , Lateralidad Funcional/fisiología , Reconocimiento Visual de Modelos/fisiología , Accidente Cerebrovascular/fisiopatología , Conducta Verbal/fisiología , Anciano , Afasia/complicaciones , Mapeo Encefálico , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador , Lenguaje , Pruebas del Lenguaje , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Estimulación Luminosa , Psicolingüística , Análisis de Regresión , Accidente Cerebrovascular/complicaciones
7.
J Magn Reson ; 186(2): 212-9, 2007 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-17350865

RESUMEN

Rapid field scan on the order of T/s using high frequency sinusoidal or triangular sweep fields superimposed on the main Zeeman field, was used for direct detection of signals without low-frequency field modulation. Simultaneous application of space-encoding rotating field gradients have been employed to perform fast CW EPR imaging using direct detection that could, in principle, approach the speed of pulsed FT EPR imaging. The method takes advantage of the well-known rapid-scan strategy in CW NMR and EPR that allows arbitrarily fast field sweep and the simultaneous application of spinning gradients that allows fast spatial encoding. This leads to fast functional EPR imaging and, depending on the spin concentration, spectrometer sensitivity and detection band width, can provide improved temporal resolution that is important to interrogate dynamics of spin perfusion, pharmacokinetics, spectral spatial imaging, dynamic oxymetry, etc.


Asunto(s)
Espectroscopía de Resonancia por Spin del Electrón/instrumentación , Espectroscopía de Resonancia por Spin del Electrón/métodos , Fantasmas de Imagen , Ondas de Radio , Rotación , Nitrilos/química
8.
J Magn Reson ; 178(2): 220-7, 2006 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-16243552

RESUMEN

The integration of modern data acquisition and digital signal processing (DSP) technologies with Fourier transform electron paramagnetic resonance (FT-EPR) imaging at radiofrequencies (RF) is described. The FT-EPR system operates at a Larmor frequency (L(f)) of 300MHz to facilitate in vivo studies. This relatively low frequency L(f), in conjunction with our approximately 10MHz signal bandwidth, enables the use of direct free induction decay time-locked subsampling (TLSS). This particular technique provides advantages by eliminating the traditional analog intermediate frequency downconversion stage along with the corresponding noise sources. TLSS also results in manageable sample rates that facilitate the design of DSP-based data acquisition and image processing platforms. More specifically, we utilize a high-speed field programmable gate array (FPGA) and a DSP processor to perform advanced real-time signal and image processing. The migration to a DSP-based configuration offers the benefits of improved EPR system performance, as well as increased adaptability to various EPR system configurations (i.e., software configurable systems instead of hardware reconfigurations). The required modifications to the FT-EPR system design are described, with focus on the addition of DSP technologies including the application-specific hardware, software, and firmware developed for the FPGA and DSP processor. The first results of using real-time DSP technologies in conjunction with direct detection bandpass sampling to implement EPR imaging at RF frequencies are presented.


Asunto(s)
Espectroscopía de Resonancia por Spin del Electrón/instrumentación , Procesamiento de Señales Asistido por Computador/instrumentación , Animales , Diseño de Equipo , Programas Informáticos , Marcadores de Spin
9.
Hum Brain Mapp ; 27(8): 636-51, 2006 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-16281285

RESUMEN

Categorization is fundamental to our perception and understanding of the environment. However, little is known about the neural bases underlying the categorization of sounds. Using human functional magnetic resonance imaging (fMRI) we compared the brain responses to a category discrimination task with an auditory discrimination task using identical sets of sounds. Our stimuli differed along two dimensions: a speech-nonspeech dimension and a fast-slow temporal dynamics dimension. All stimuli activated regions in the primary and nonprimary auditory cortices in the temporal cortex and in the parietal and frontal cortices for the two tasks. When comparing the activation patterns for the category discrimination task to those for the auditory discrimination task, the results show that a core group of regions beyond the auditory cortices, including inferior and middle frontal gyri, dorsomedial frontal gyrus, and intraparietal sulcus, were preferentially activated for familiar speech categories and for novel nonspeech categories. These regions have been shown to play a role in working memory tasks by a number of studies. Additionally, the categorization of nonspeech sounds activated left middle frontal gyrus and right parietal cortex to a greater extent than did the categorization of speech sounds. Processing the temporal aspects of the stimuli had a greater impact on the left lateralization of the categorization network than did other factors, particularly in the inferior frontal gyrus, suggesting that there is no inherent left hemisphere advantage in the categorical processing of speech stimuli, or for the categorization task itself.


Asunto(s)
Corteza Auditiva/anatomía & histología , Corteza Auditiva/fisiología , Lenguaje , Percepción del Habla/fisiología , Conducta Verbal/fisiología , Estimulación Acústica/métodos , Adulto , Femenino , Lóbulo Frontal/anatomía & histología , Lóbulo Frontal/fisiología , Lateralidad Funcional/fisiología , Humanos , Pruebas del Lenguaje , Imagen por Resonancia Magnética , Masculino , Memoria a Corto Plazo/fisiología , Persona de Mediana Edad , Red Nerviosa/anatomía & histología , Red Nerviosa/fisiología , Vías Nerviosas/anatomía & histología , Vías Nerviosas/fisiología , Lóbulo Parietal/anatomía & histología , Lóbulo Parietal/fisiología , Tiempo de Reacción/fisiología , Factores de Tiempo
10.
Rev Sci Instrum ; 76(3): 1-6, 2005 May.
Artículo en Inglés | MEDLINE | ID: mdl-17330148

RESUMEN

The application of direct time-locked subsampling (TLSS) to Fourier transform electron paramagnetic resonance (FT-EPR) spectroscopy at radio frequencies (rf) is described. With conventional FT-EPR spectroscopy, the high Larmor frequencies (L(f)) often necessitate the use of intermediate frequency (IF) stages to down convert the received free induction decay (FID) signal to a frequency that can be acquired with common data acquisition technology. However, our research focuses on in vivo studies, and consequently utilizes a FT-EPR system with a L(f) of 300 MHz. This relatively low frequency L(f), in conjunction with the advent of bandpass sampling analog-to-digital conversion and signal processing technologies, has enabled us to omit the IF stage in our FT-EPR system. With this in mind, TLSS techniques have been developed to directly sample the 300 MHz FID signal at a sampling rate of 80 MHz providing a signal bandwidth of 20 MHz. The required modifications to the data acquisition and processing system specific to this application are described. Custom software developed to control the EPR system setup, acquire the signals, and post process the data, is outlined. Data was acquired applying both coherent averaging and stochastic excitation sequences. The results of these experiments demonstrate digital down conversion of the 300 MHz FID signal to quadrature baseband. Direct FID TLSS eliminates many noise sources common in EPR systems employing traditional analog receiver techniques, such as the IF mixer stage in single channel systems, and the quadrature baseband mixer stage in dual channel systems.

11.
J Magn Reson ; 162(1): 35-45, 2003 May.
Artículo en Inglés | MEDLINE | ID: mdl-12762981

RESUMEN

The application of correlation spectroscopy employing stochastic excitation and the Hadamard transform to time-domain Fourier transform electron paramagnetic resonance (FT-EPR) spectroscopy in the radiofrequency (RF) band is described. An existing, time-domain FT-EPR spectrometer system with a Larmor frequency (L(f)) of 300 MHz was used to develop this technique by incorporating a pseudo-random pulse sequence generator to output the maximum length binary sequence (MLBS, 10- and 11-bit). Software developed to control the EPR system setup, acquire the signals, and post process the data, is outlined. The software incorporates the Hadamard transform algorithm to perform the required cross-correlation of the acquired signal and the MLBS after stochastic excitation. To accommodate the EPR signals, bandwidth extension was accomplished by sampling at a rate many times faster than the RF pulse repetition rate, and subsequent digital signal processing of the data. The results of these experiments showed that there was a decrease in the total acquisition time, and an improved free induction decay (FID) signal-to-noise (S/N) ratio compared to the conventional coherent averaging approach. These techniques have the potential to reduce the RF pulse power to the levels used in continuous wave (CW) EPR while retaining the advantage of time-domain EPR methods. These methods have the potential to facilitate the progression to in vivo FT-EPR imaging of larger volumes.


Asunto(s)
Espectroscopía de Resonancia por Spin del Electrón/instrumentación , Análisis de Fourier , Procesamiento de Señales Asistido por Computador/instrumentación , Procesos Estocásticos , Animales , Simulación por Computador , Diseño de Equipo , Ondas de Radio , Programas Informáticos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA