Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Phys Rev Lett ; 124(6): 064502, 2020 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-32109122

RESUMEN

The spreading of a pure, volatile liquid on a wettable substrate has been studied in extensive detail. Here we show that the addition of a miscible, nonvolatile liquid can strongly alter the contact line dynamics and the final liquid deposition pattern. We observe two distinct regimes of behavior depending on the relative strength of solutal Marangoni forces and surface wetting. Fingerlike instabilities precede the deposition of a submicron thick film for large Marangoni forces and small solute contact angles, whereas isolated pearl-like drops emerge and are deposited in quasicrystalline patterns for small Marangoni forces and large solute contact angles. This behavior can be tuned by directly varying the contact angle of the solute liquid on the solid substrate.

2.
Phys Rev Lett ; 121(13): 134501, 2018 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-30312092

RESUMEN

Experiments and simulations suggest that simple liquids may experience slip while flowing near a smooth, hydrophobic surface. Here we show how precursors to molecular slip can be observed in the complex response of a liquid to oscillatory shear. We measure both the change in frequency and bandwidth of a quartz crystal microbalance during the growth of a single drop of water immersed in an ambient liquid. By varying the hydrophobicity of the surface using self-assembled monolayers, our results show little or no slip for water on all surfaces. However, we observe excess transverse motion near hydrophobic surfaces due to weak binding in the corrugated surface potential, an essential precursor to slip. We also show how this effect can be easily missed in simulations utilizing finite-ranged interaction potentials.

3.
Phys Rev Lett ; 107(23): 235701, 2011 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-22182101

RESUMEN

We study the glass transition in confined polymer films and present the first experimental evidence indicating that two separate mechanisms can act simultaneously on the film to propagate enhanced mobility from the free surface into the material. Using transmission ellipsometry, we have measured the thermal expansion of ultrathin, high molecular-weight (MW), freestanding polystyrene films over an extended temperature range. For two different MWs, we observed two distinct reduced glass transition temperatures (T(g)'s), separated by up to 60 K, within single films with thicknesses h less than 70 nm. The lower transition follows the expected MW dependent, linear T(g)(h) behavior previously seen in high MW freestanding films. We also observe a much stronger upper transition with no MW dependence that exhibits the same T(g)(h) dependence as supported and low MW freestanding polymer films.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA