Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Cancer Discov ; 13(5): 1186-1209, 2023 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-36811466

RESUMEN

Tumor heterogeneity is a major barrier to cancer therapy, including immunotherapy. Activated T cells can efficiently kill tumor cells following recognition of MHC class I (MHC-I)-bound peptides, but this selection pressure favors outgrowth of MHC-I-deficient tumor cells. We performed a genome-scale screen to discover alternative pathways for T cell-mediated killing of MHC-I-deficient tumor cells. Autophagy and TNF signaling emerged as top pathways, and inactivation of Rnf31 (TNF signaling) and Atg5 (autophagy) sensitized MHC-I-deficient tumor cells to apoptosis by T cell-derived cytokines. Mechanistic studies demonstrated that inhibition of autophagy amplified proapoptotic effects of cytokines in tumor cells. Antigens from apoptotic MHC-I-deficient tumor cells were efficiently cross-presented by dendritic cells, resulting in heightened tumor infiltration by IFNγ-and TNFα-producing T cells. Tumors with a substantial population of MHC-I-deficient cancer cells could be controlled by T cells when both pathways were targeted using genetic or pharmacologic approaches. SIGNIFICANCE: Tumor heterogeneity is a major barrier to immunotherapy. We show that MHC-I-deficient tumor cells are forced into apoptosis by T cell-derived cytokines when TNF signaling and autophagy pathways are targeted. This approach enables T cell-mediated elimination of tumors with a substantial population of resistant, MHC-I-deficient tumor cells. This article is highlighted in the In This Issue feature, p. 1027.


Asunto(s)
Neoplasias , Linfocitos T , Humanos , Citocinas , Antígenos de Histocompatibilidad Clase I/metabolismo , Neoplasias/genética , Neoplasias/terapia , Genes MHC Clase I
2.
Proc Natl Acad Sci U S A ; 120(1): e2213222120, 2023 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-36577059

RESUMEN

Adoptive T cell transfer (ACT) therapies suffer from a number of limitations (e.g., poor control of solid tumors), and while combining ACT with cytokine therapy can enhance effectiveness, this also results in significant side effects. Here, we describe a nanotechnology approach to improve the efficacy of ACT therapies by metabolically labeling T cells with unnatural sugar nanoparticles, allowing direct conjugation of antitumor cytokines onto the T cell surface during the manufacturing process. This allows local, concentrated activity of otherwise toxic cytokines. This approach increases T cell infiltration into solid tumors, activates the host immune system toward a Type 1 response, encourages antigen spreading, and improves control of aggressive solid tumors and achieves complete blood cancer regression with otherwise noncurative doses of CAR-T cells. Overall, this method provides an effective and easily integrated approach to the current ACT manufacturing process to increase efficacy in various settings.


Asunto(s)
Citocinas , Neoplasias , Humanos , Citocinas/metabolismo , Inmunoterapia Adoptiva/métodos , Receptores de Antígenos de Linfocitos T , Linfocitos T , Neoplasias/patología , Tratamiento Basado en Trasplante de Células y Tejidos
3.
Nature ; 606(7916): 992-998, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35614223

RESUMEN

Most cancer vaccines target peptide antigens, necessitating personalization owing to the vast inter-individual diversity in major histocompatibility complex (MHC) molecules that present peptides to T cells. Furthermore, tumours frequently escape T cell-mediated immunity through mechanisms that interfere with peptide presentation1. Here we report a cancer vaccine that induces a coordinated attack by diverse T cell and natural killer (NK) cell populations. The vaccine targets the MICA and MICB (MICA/B) stress proteins expressed by many human cancers as a result of DNA damage2. MICA/B serve as ligands for the activating NKG2D receptor on T cells and NK cells, but tumours evade immune recognition by proteolytic MICA/B cleavage3,4. Vaccine-induced antibodies increase the density of MICA/B proteins on the surface of tumour cells by inhibiting proteolytic shedding, enhance presentation of tumour antigens by dendritic cells to T cells and augment the cytotoxic function of NK cells. Notably, this vaccine maintains efficacy against MHC class I-deficient tumours resistant to cytotoxic T cells through the coordinated action of NK cells and CD4+ T cells. The vaccine is also efficacious in a clinically important setting: immunization following surgical removal of primary, highly metastatic tumours inhibits the later outgrowth of metastases. This vaccine design enables protective immunity even against tumours with common escape mutations.


Asunto(s)
Síndromes Mielodisplásicos , Neoplasias , Enfermedades Cutáneas Genéticas , Vacunas , Antígenos de Histocompatibilidad Clase I , Humanos , Células Asesinas Naturales , Subfamilia K de Receptores Similares a Lectina de Células NK/metabolismo , Neoplasias/prevención & control
4.
Cancer Discov ; 11(8): 2050-2071, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33707234

RESUMEN

A number of cancer drugs activate innate immune pathways in tumor cells but unfortunately also compromise antitumor immune function. We discovered that inhibition of CARM1, an epigenetic enzyme and cotranscriptional activator, elicited beneficial antitumor activity in both cytotoxic T cells and tumor cells. In T cells, Carm1 inactivation substantially enhanced their antitumor function and preserved memory-like populations required for sustained antitumor immunity. In tumor cells, Carm1 inactivation induced a potent type 1 interferon response that sensitized resistant tumors to cytotoxic T cells. Substantially increased numbers of dendritic cells, CD8 T cells, and natural killer cells were present in Carm1-deficient tumors, and infiltrating CD8 T cells expressed low levels of exhaustion markers. Targeting of CARM1 with a small molecule elicited potent antitumor immunity and sensitized resistant tumors to checkpoint blockade. Targeting of this cotranscriptional regulator thus offers an opportunity to enhance immune function while simultaneously sensitizing resistant tumor cells to immune attack. SIGNIFICANCE: Resistance to cancer immunotherapy remains a major challenge. Targeting of CARM1 enables immunotherapy of resistant tumors by enhancing T-cell functionality and preserving memory-like T-cell populations within tumors. CARM1 inhibition also sensitizes resistant tumor cells to immune attack by inducing a tumor cell-intrinsic type 1 interferon response.This article is highlighted in the In This Issue feature, p. 1861.


Asunto(s)
Inhibidores de Puntos de Control Inmunológico/farmacología , Neoplasias/terapia , Proteína-Arginina N-Metiltransferasas/antagonistas & inhibidores , Línea Celular Tumoral/efectos de los fármacos , Humanos , Inmunoterapia , Linfocitos T/efectos de los fármacos
5.
Cancer Immunol Res ; 8(6): 769-780, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32209637

RESUMEN

Resistance to cytotoxic T cells is frequently mediated by loss of MHC class I expression or IFNγ signaling in tumor cells, such as mutations of B2M or JAK1 genes. Natural killer (NK) cells could potentially target such resistant tumors, but suitable NK-cell-based strategies remain to be developed. We hypothesized that such tumors could be targeted by NK cells if sufficient activating signals were provided. Human tumors frequently express the MICA and MICB ligands of the activating NKG2D receptor, but proteolytic shedding of MICA/B represents an important immune evasion mechanism in many human cancers. We showed that B2M- and JAK1-deficient metastases were targeted by NK cells following treatment with a mAb that blocks MICA/B shedding. We also demonstrated that the FDA-approved HDAC inhibitor panobinostat and a MICA/B antibody acted synergistically to enhance MICA/B surface expression on tumor cells. The HDAC inhibitor enhanced MICA/B gene expression, whereas the MICA/B antibody stabilized the synthesized protein on the cell surface. The combination of panobinostat and the MICA/B antibody reduced the number of pulmonary metastases formed by a human melanoma cell line in NOD/SCID gamma mice reconstituted with human NK cells. NK-cell-mediated immunity induced by a mAb specific for MICA/B, therefore, provides an opportunity to target tumors with mutations that render them resistant to cytotoxic T cells.


Asunto(s)
Antígenos de Histocompatibilidad Clase I/química , Inmunidad Celular/inmunología , Células Asesinas Naturales/inmunología , Neoplasias Pulmonares/terapia , Melanoma/terapia , Linfocitos T Citotóxicos/inmunología , Animales , Anticuerpos Monoclonales/farmacología , Apoptosis , Proliferación Celular , Femenino , Regulación Neoplásica de la Expresión Génica , Antígenos de Histocompatibilidad Clase I/inmunología , Antígenos de Histocompatibilidad Clase I/metabolismo , Humanos , Neoplasias Pulmonares/inmunología , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/secundario , Melanoma/inmunología , Melanoma/metabolismo , Melanoma/patología , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos NOD , Ratones Noqueados , Ratones SCID , Subfamilia K de Receptores Similares a Lectina de Células NK/metabolismo , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
6.
JCI Insight ; 4(23)2019 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-31801909

RESUMEN

NK cells contribute to protective antitumor immunity, but little is known about the functional states of NK cells in human solid tumors. To address this issue, we performed single-cell RNA-seq analysis of NK cells isolated from human melanoma metastases, including lesions from patients who had progressed following checkpoint blockade. This analysis identified major differences in the transcriptional programs of tumor-infiltrating compared with circulating NK cells. Tumor-infiltrating NK cells represented 7 clusters with distinct gene expression programs indicative of significant functional specialization, including cytotoxicity and chemokine synthesis programs. In particular, NK cells from 3 clusters expressed high levels of XCL1 and XCL2, which encode 2 chemokines known to recruit XCR1+ cross-presenting DCs into tumors. In contrast, NK cells from 2 other clusters showed a higher level of expression of cytotoxicity genes. These data reveal key features of NK cells in human tumors and identify NK cell populations with specialized gene expression programs.


Asunto(s)
Regulación Neoplásica de la Expresión Génica , Células Asesinas Naturales/inmunología , Linfocitos Infiltrantes de Tumor/inmunología , Melanoma/genética , Melanoma/inmunología , Metástasis de la Neoplasia/inmunología , Línea Celular Tumoral , Quimiocinas/genética , Quimiocinas/metabolismo , Quimiocinas C , Reactividad Cruzada , Humanos , Inmunidad Innata
7.
Science ; 359(6383): 1537-1542, 2018 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-29599246

RESUMEN

MICA and MICB are expressed by many human cancers as a result of cellular stress, and can tag cells for elimination by cytotoxic lymphocytes through natural killer group 2D (NKG2D) receptor activation. However, tumors evade this immune recognition pathway through proteolytic shedding of MICA and MICB proteins. We rationally designed antibodies targeting the MICA α3 domain, the site of proteolytic shedding, and found that these antibodies prevented loss of cell surface MICA and MICB by human cancer cells. These antibodies inhibited tumor growth in multiple fully immunocompetent mouse models and reduced human melanoma metastases in a humanized mouse model. Antitumor immunity was mediated mainly by natural killer (NK) cells through activation of NKG2D and CD16 Fc receptors. This approach prevents the loss of important immunostimulatory ligands by human cancers and reactivates antitumor immunity.


Asunto(s)
Anticuerpos Bloqueadores/uso terapéutico , Anticuerpos Monoclonales/uso terapéutico , Antígenos de Histocompatibilidad Clase I/inmunología , Células Asesinas Naturales/inmunología , Melanoma/terapia , Animales , Anticuerpos Bloqueadores/inmunología , Anticuerpos Monoclonales/inmunología , Antígenos de Histocompatibilidad Clase I/química , Humanos , Inmunocompetencia , Ligandos , Melanoma/inmunología , Melanoma/patología , Melanoma Experimental/inmunología , Melanoma Experimental/patología , Melanoma Experimental/terapia , Ratones , Ratones Endogámicos C57BL , Subfamilia K de Receptores Similares a Lectina de Células NK/inmunología , Metástasis de la Neoplasia , Dominios Proteicos/inmunología , Receptores de IgG/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA