Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 143
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-39237671

RESUMEN

Psoriasis is a prevalent chronic disease affecting 2-3% of the global population. Cyclosporine A (CyA) has been widely used with great promise in the treatment of moderate to severe psoriasis despite various side effects associated with its systemic administration. Topical administration of CyA circumvents systemic side effects; however, the poor water solubility and large molecular weight of CyA pose challenges for dermal delivery. In this study, choline-based ionic liquids (ILs) were used to enhance the dermal delivery of CyA for the potential treatment of psoriasis. All four ILs tested significantly improved the solubility of CyA, which was greater than that of the control group with dimethyl sulfoxide (DMSO) as a solubilizer (20%, w/w). The saturated solubility of CyA in two of the ILs, choline geranate ([Ch][Ge]) and choline ricinoleate ([Ch][Ra]), reached more than 90 mg/mL, and the solubilization capability of the ILs except [Ch][Ci] was resistant to water dilution. The negligible change in CyA content determined by high-performance liquid chromatography and the secondary structure detected by circular dichroism spectroscopy confirmed the stability of CyA in the ILs. At 4 h in the in vitro penetration test, the amount of CyA retained in the skin in the IL groups was slightly greater than that in the control group (20% DMSO). The water content of the ILs significantly affected their penetration ability. When the water content increased from 10 to 70%, the dermal delivery of CyA first increased, peaked at a water content of 30%, and then decreased. The dermal delivery ability of [Ch][Ge] and [Ch][Ra] with a water content of 70% was still comparable to that of 20% DMSO. Moreover, CyA-loaded ILs (0.5%, w/w) significantly relieved the symptoms of psoriasis in an imiquimod (IMQ)-induced mouse model, and the levels of inflammatory factors, including tumor necrosis factor α, interleukin 22 and interleukin 17, in the affected area were reduced by 71.7%, 75.6%, and 89.3%, respectively. The IL tested, choline sorbate ([Ch][So]), showed low cytotoxicity to human immortalized epidermal cells (HaCaT). After 7 days of consecutive application, [Ch][So] did not cause significant irritation. In conclusion, ILs demonstrate promising potential for the dermal delivery of CyA for the treatment of psoriasis.

2.
J Nanobiotechnology ; 22(1): 553, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39261807

RESUMEN

Lipid nanoparticles (LNPs) are currently the most commonly used non-viral gene delivery system. Their physiochemical attributes, encompassing size, charge and surface modifications, significantly affect their behaviors both in vivo and in vitro. Nevertheless, the effects of these properties on the transfection and distribution of LNPs after intramuscular injection remain elusive. In this study, LNPs with varying sizes, lipid-based charges and PEGylated lipids were formulated to study their transfection and in vivo distribution. Luciferase mRNA (mLuc) was entraped in LNPs as a model nucleic acid molecule. Results indicated that smaller-sized LNPs and those with neutral potential presented superior transfection efficiency after intramuscular injection. Surprisingly, the sizes and charges did not exert a notable influence on the in vivo distribution of the LNPs. Furthermore, PEGylated lipids with shorter acyl chains contributed to enhanced transfection efficiency due to their superior cellular uptake and lysosomal escape capabilities. Notably, the mechanisms underlying cellular uptake differed among LNPs containing various types of PEGylated lipids, which was primarily attributed to the length of their acyl chain. Together, these insights underscore the pivotal role of nanoparticle characteristics and PEGylated lipids in the intramuscular route. This study not only fills crucial knowledge gaps but also provides significant directions for the effective delivery of mRNA via LNPs.


Asunto(s)
Lípidos , Nanopartículas , Tamaño de la Partícula , Polietilenglicoles , ARN Mensajero , Transfección , Nanopartículas/química , Animales , Polietilenglicoles/química , Inyecciones Intramusculares , Lípidos/química , Transfección/métodos , Ratones , Técnicas de Transferencia de Gen , Humanos , Luciferasas/metabolismo , Luciferasas/genética , Propiedades de Superficie , Liposomas
3.
J Control Release ; 375: 812-828, 2024 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-39341285

RESUMEN

Proteins and peptides have been increasingly developed as pharmaceuticals owing to their high potency and low side effects. However, their administration routes are confined to injections, such as intra-muscular and intra-venous injections, making patient compliance a challenge. Hence, non-injectable delivery systems are crucial to expanding the clinical use of proteins and peptides. In this context, two choline-based ionic liquids (ILs), namely, choline geranic acid ([Ch][Ger]) and choline citric acid ([Ch][Cit]), have been identified as promising agents for enhancing the permeation and prolonging the retention time of glucagon (GC) after intra-nasal administration. Notably, intra-nasal delivery of GC via ILs (GC/ILs) elicited rapid and smooth reversal of acute hypoglycaemia without leading to rebound hyperglycaemia in type 1 diabetic rats subjected to insulin induction. In addition, ILs could improve the transcellular transport of GC through electrostatic interaction. ILs could also transiently open inter-cellular tight junctions transiently to facilitate the paracellular transport of GC. Safety tests indicated that continuous intra-nasal delivery of ILs led to reversible changes, such as epithelial cell inflammation, goblet cell overgrowth, and impacts on the distribution of nasal cilia. However, these changes could be alleviated by the innate self-repair ability of mucosal epithelial cells. This study highlights the considerable potential of ILs for long-term nasal delivery of biomacromolecules.

4.
Eur J Pharm Biopharm ; 201: 114353, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38885911

RESUMEN

The latent reservoir of human immunodeficiency virus (HIV) is a major obstacle in the treatment of acquired immune deficiency syndrome (AIDS). The "shock and kill" strategy has emerged as a promising approach for clearing HIV latent reservoirs. However, current latency-reversing agents (LRAs) have limitations in effectively and safely activating the latent virus and reducing the HIV latent reservoirs in clinical practice. Previously, EK-16A was extracted from Euphorbia kansui, which had the effect of interfering with the HIV-1 latent reservoir and inhibiting HIV-1 entry. Nevertheless, there is no suitable and efficient EK-16A oral formulation for in vivo delivery and clinical use. In this study, an oral EK-16A self-nanoemulsifying drug delivery system (EK-16A-SNEDDS) was proposed to "shock" the HIV-1 latent reservoir. This system aims to enhance the bioavailability and delivery of EK-16A to various organs. The composition of EK-16A-SNEDDS was optimized through self-emulsifying grading and ternary phase diagram tests. Cell models, pharmacokinetic experiments, and pharmacodynamics in HIV-1 latent cell transplant animal models suggested that EK-16A-SNEDDS could be absorbed by the gastrointestinal tract and enter the blood circulation after oral administration, thereby reaching various organs to activate latent HIV-1. The prepared EK-16A-SNEDDS demonstrated safety and efficacy, exhibited high clinical experimental potential, and may be a promising oral preparation for eliminating HIV-1 latent reservoirs.


Asunto(s)
Emulsiones , VIH-1 , Latencia del Virus , VIH-1/efectos de los fármacos , Latencia del Virus/efectos de los fármacos , Animales , Administración Oral , Humanos , Activación Viral/efectos de los fármacos , Euphorbia/química , Infecciones por VIH/tratamiento farmacológico , Infecciones por VIH/virología , Extractos Vegetales/administración & dosificación , Extractos Vegetales/farmacología , Disponibilidad Biológica , Sistema de Administración de Fármacos con Nanopartículas , Fármacos Anti-VIH/administración & dosificación , Fármacos Anti-VIH/farmacología , Fármacos Anti-VIH/farmacocinética , Masculino , Sistemas de Liberación de Medicamentos/métodos , Ratones
5.
ACS Appl Mater Interfaces ; 16(26): 33081-33092, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38888094

RESUMEN

Inflammatory bowel disease (IBD) is a chronic and recurrent inflammatory disease that affects the gastrointestinal tract. The major hurdles impeding IBD treatment are the low targeting efficiency and short retention time of drugs in IBD sites. Nanoparticles with specific shapes have demonstrated the ability to improve mucus retention and cellular uptake. Herein, mesoporous silica nanoparticles (MSNs) with various morphologies were used to deliver budesonide (BUD) for the treatment of IBD. The therapeutic efficacy is strongly dependent on their shapes. The system comprises different shapes of MSNs as carriers for budesonide (BUD), along with Eudragit S100 as the enteric release shell. The encapsulation of Eudragit S100 not only improved the stability of MSNs-BUD in the gastrointestinal tract but also conferred pH-responsive drug release properties. Then, MSNs efficiently deliver BUD to the colon site, and the special shape of MSNs plays a critical role in enhancing their permeability and retention in the mucus layer. Among them, dendritic MSNs (MSND) effectively reduced myeloperoxidase (MPO) activity and levels of inflammatory cytokines in the colon due to long retention time and rapid release in IBD sites, thereby enhancing the therapeutic efficacy against colitis. Given the special shapes of MSNs and pH-responsivity of Eudragit S100, BUD loaded in the voids of MSND (E@MSNs-BUD) could penetrate the mucous layer and be accurately delivered to the colon with minor side effects. This system is expected to complement current treatment strategies for the IBD.


Asunto(s)
Budesonida , Portadores de Fármacos , Enfermedades Inflamatorias del Intestino , Nanopartículas , Dióxido de Silicio , Budesonida/química , Budesonida/administración & dosificación , Budesonida/uso terapéutico , Budesonida/farmacocinética , Nanopartículas/química , Nanopartículas/uso terapéutico , Animales , Dióxido de Silicio/química , Enfermedades Inflamatorias del Intestino/tratamiento farmacológico , Enfermedades Inflamatorias del Intestino/patología , Portadores de Fármacos/química , Ratones , Ácidos Polimetacrílicos/química , Liberación de Fármacos , Humanos , Antiinflamatorios/química , Antiinflamatorios/uso terapéutico , Antiinflamatorios/administración & dosificación , Porosidad , Concentración de Iones de Hidrógeno
6.
Pharmaceuticals (Basel) ; 16(9)2023 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-37765093

RESUMEN

Peptides and proteins have emerged as more important therapeutic molecules compared to small molecular chemicals due to their high specificity and efficacy and low toxicity [...].

7.
Bioeng Transl Med ; 8(3): e10463, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37206222

RESUMEN

Ionic liquids (ILs) loading ketoconazole (KCZ) have shown better efficacy on rats with tinea pedis than the marketed Daktarin® but clinical studies are still lacking. In this study, we described the clinical translation of ILs containing KCZ (KCZ-ILs) from the lab into the clinic and evaluated the efficacy and safety of KCZ-ILs in patients with tinea pedis. Thirty-six enrolled participants were randomized to receive either KCZ-ILs (KCZ, 4.72 mg/g) or Daktarin® (control group; KCZ, 20 mg/g) topically twice daily, making the lesion be covered with a thin layer of medication. The randomized controlled trial lasted for 8 weeks including 4 weeks of intervention and 4 weeks of follow-up. Primary efficacy outcome was the proportion of treatment success responders, defined as patients achieving negative mycological result and ≥60% relative reduction in total clinical symptom score (TSS) from baseline at week 4. Secondary outcomes mainly for evaluating the relapse of disease included the proportion of treatment success individuals at week 8 and fungal recurrence rate at weeks 2, 3, 4, and 8. After 4 weeks of medication, 47.06% of the KCZ-ILs subjects were treatment successes compared with only 25.00% of those using Daktarin®. Throughout the trial period, KCZ-ILs induced a significantly lower recurrence rate (52.94%) than that of control patients (68.75%). Furthermore, KCZ-ILs were found to be safe and well-tolerated. In conclusion, ILs loading only 1/4 KCZ dose of Daktarin® showed a better efficacy and safety profile in the management of tinea pedis, creating a new opportunity for the treatment of skin diseases caused by fungal infection and is worthy of clinical application.

8.
Mol Pharm ; 20(5): 2579-2588, 2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-37046179

RESUMEN

In vitro dissolution that predicts the in vivo performance of solid preparations is extremely important in formulation optimization. Fraction absorbed (Fa) has been used to screen in vitro dissolution protocols based on the idea of in vitro-in vivo correlation (IVIVC) but failed to increase the success rate due to the inaccuracy of the Fa. The essence of IVIVC is the correlation between in vitro dissolution and in vivo dissolution. We tried to establish in vitro dissolution protocol via similarity with in vivo dissolution using aripiprazole (APZ) as a model drug. Hybrid APZ crystals (APZ-HCs) were prepared by physically embedding aggregation-caused quenching (ACQ) fluorophores inside the lattice to measure the in vivo dissolution. The process did not change the physicochemical properties and crystallinity of APZ. The fluorophore illuminated APZ crystals but was quenched upon dissolution of APZ-HCs in aqueous media, enabling monitoring intact APZ-HCs in real-time. The good correlation between fluorescent quenching and dissolution of APZ-HCs justified reliable quantification of intact APZ crystals. The residual percentage of fluorescence intensity in rats treated by APZ-HCs was recorded with time, which was converted to in vivo dissolution by the difference from 100%. The in vivo dissolution was validated with the Fa. The in vitro dissolution profile of APZ was set up via a similarity factor larger than 50 in comparison with the in vivo dissolution. The study provides a novel idea and method to establish in vitro dissolution protocol.


Asunto(s)
Aripiprazol , Ratas , Animales , Aripiprazol/química , Solubilidad
9.
Bioeng Transl Med ; 8(2): e10405, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36925679

RESUMEN

Ionic liquids (ILs) attract more and more interests in improving drug transport across membrane, including transdermal, nasal, and oral delivery. However, some drawbacks of ILs impede the application in oral drug delivery, such as rapid precipitation of poorly soluble drugs in stomach. This study aimed to employ enteric mesoporous silica nanoparticles (MSNs) to load ILs to overcome the shortcomings faced in oral administration. The choline sorbate ILs (SCILs) were synthesized by choline bicarbonate and sorbic acid and then adsorbed in mesopores of MSNs after dissolving cyclosporin A (CyA). MSNs loading SCILs and CyA were coated by Eudragit® L100 to form enteric nanoparticles. The in vitro release study showed that the CyA and SCILs released only 10% for 2 h in simulated gastric fluids but more than 90% in simulated intestinal fluid. In addition, SCILs and CyA were able to release from MSNs synchronously. After oral administration, enteric MSNs loading SCILs were capable of improving oral absorption of CyA significantly and the oral bioavailability of CyA was similar with that of oral Neoral®. In addition, the oral absorption of enteric MSNs was higher than that of nonenteric MSNs, which showed that enteric coating was necessary to ILs in oral delivery. These findings revealed great potential of translation of ILs to be enteric nanoparticles for facilitating oral absorption of CyA. It is predictable this delivery system is promising to be a platform for delivering poorly water-soluble drugs and even biologics orally.

10.
J Control Release ; 354: 279-293, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36641117

RESUMEN

How to enhance active targeting efficiency remains a challenge. Multivalent interactions play a crucial role in improving the binding ability between ligands and receptors. It is hypothesized that nanoparticles bearing a flat conformation attain simultaneous formation of multiple ligand-receptor bindings, which could be vividly metaphorized by the "Hook&Loop" rationale. In this study, spherical, rod-shaped and disk-shaped folic acid-modified red blood cell membrane-coated biomimetic mesoporous silica nanoparticles (FRMSNs) were prepared to verify the shape-based multivalent interactions. The fundamental concepts of multivalent interactions have been proved by a series of both in vitro and in vivo evaluations. Physical characterization confirmed the morphology, shape and surface features of FRMSNs. Strengthened binding and internalization of disk-shaped FRMSNs by K562 cells stresses the merits of multivalent interactions. Whereas Bio-TEM visually demonstrates the proposed "plane" contact of disk-shaped particles with cells, quantification further confirmed strengthened "plane" binding affinity with folate binding proteins owing to multivalent interactions. In K562 xenograft mice, doxorubicin-loaded disk-shaped FRMSNs effectively slowed down chronic myeloid leukemia progression. It is concluded that disks favor multivalent interactions which leads to enhanced active targeting efficiency.


Asunto(s)
Sistemas de Liberación de Medicamentos , Nanopartículas , Humanos , Animales , Ratones , Nanopartículas/química , Doxorrubicina , Ácido Fólico/química , Ligandos , Proteínas Portadoras
11.
Acta Pharm Sin B ; 12(10): 3972-3985, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36213530

RESUMEN

Due to the overwhelming percentage of poorly water-soluble drugs, pharmaceutical industry is in urgent need of efficient approaches for solubilization and permeability improvement. Salts consisting of lipophilic fatty acid anions and hydrophilic choline cations are found to be surface active and able to form ionic co-aggregates (ICAs) in water. Choline oleate-based ICAs significantly enhance oral absorption of paclitaxel (PTX) as compared with cremophor EL-based micelles (MCs). Aggregation-caused quenching probes enable tracking of intact ICAs in in vivo transport and cellular interaction. Prolonged intestinal retention of ICAs than MCs implies stronger solubilizing capability in vivo. Ex vivo imaging of major organs and intestinal tracts suggests transepithelial transport of intact ICAs. Cellular studies support the enhanced absorption of PTX and transmembrane transport of intact ICAs. In conclusion, ICAs, consisting of lipophilic ions and hydrophilic counter-ions, are of great potential in delivery of poorly water-soluble drugs by enhancing solubility and permeability.

12.
Pharm Res ; 39(10): 2329-2334, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35974125

RESUMEN

Ionic liquids (ILs) recently draw attention for addressing unmet needs in biomedicines. By converting solids into liquids, ILs are emerging as novel platforms to overcome some critical drawbacks associated with the application of solid or crystalline active pharmaceutical ingredients (APIs). ILs have shown promise in liquidizing or solubilizing APIs, or as green solvents, novel permeation enhancers or active ingredients, alone or synergistically with APIs. Meanwhile, challenges turn up in company with the deepening understanding of ILs as drug delivery carrier systems. This perspective aims to provide a sketchy overview on the status quo with specific attention paid to new problems arising from the utilization of ILs-based technologies in drug delivery.


Asunto(s)
Líquidos Iónicos , Sistemas de Liberación de Medicamentos , Líquidos Iónicos/química , Preparaciones Farmacéuticas , Solventes
13.
Pharmaceuticals (Basel) ; 15(7)2022 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-35890174

RESUMEN

Skin delivery of biomacromolecules holds great advantages in the systemic and local treatment of multiple diseases. However, the densely packed stratum corneum and the tight junctions between keratinocytes stand as formidable skin barriers against the penetration of most drug molecules. The large molecular weight, high hydrophilicity, and lability nature of biomacromolecules pose further challenges to their skin penetration. Recently, novel penetration enhancers, nano vesicles, and microneedles have emerged as efficient strategies to deliver biomacromolecules deep into the skin to exert their therapeutic action. This paper reviews the potential application and mechanisms of novel skin delivery strategies with emphasis on the pharmaceutical formulations.

14.
Adv Drug Deliv Rev ; 188: 114463, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35905947

RESUMEN

This review aims to provide a systemic analysis of the in vivo, as well as subcellular, fate of polymeric micelles (PMs), starting from the entry of PMs into the body. Few PMs are able to cross the biological barriers intact and reach the circulation. In the blood, PMs demonstrate fairly good stability mainly owing to formation of protein corona despite controversial results reported by different groups. Although the exterior hydrophilic shells render PMs "long-circulating", the biodistribution of PMs into the mononuclear phagocyte systems (MPS) is dominant as compared with non-MPS organs and tissues. Evidence emerges to support that the copolymer poly(ethylene glycol)-poly(lactic acid) (PEG-PLA) is first broken down into pieces of PEG and PLA and then remnants to be eliminated from the body finally. At the cellular level, PMs tend to be internalized via endocytosis due to their particulate nature and disassembled and degraded within the cell. Recent findings on the effect of particle size, surface characteristics and shape are also reviewed. It is envisaged that unraveling the in vivo and subcellular fate sheds light on the performing mechanisms and gears up the clinical translation of PMs.


Asunto(s)
Portadores de Fármacos , Micelas , Humanos , Tamaño de la Partícula , Polímeros , Distribución Tisular
15.
Pharm Res ; 39(10): 2391-2404, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35879499

RESUMEN

Antimicrobial resistance has become a serious threat to global health. New antimicrobials are thus urgently needed. Ionic liquids (ILs), salts consisting of organic cations and anions with melting points less than 100°C, have been recently found to be promising in antimicrobial field as they may disrupt the bacterial wall and membrane and consequently lead to cell leakage and death. Different types of antimicrobial ILs are introduced in the review, including cationic, polymeric, and anionic ILs. Being the main type of the antimicrobial ILs, the review focuses on the structure and the antimicrobial mechanisms of cationic ILs. The quantitative structure-activity relationship (QSAR) models of the cationic ILs are also included. Increase in alkyl chain length and lipophilicity is beneficial to increase the antimicrobial effects of cationic ILs. Polymeric ILs are homopolymers of monomer ILs or copolymers of ILs and other monomers. They have great potential in the field of antibiotics as they provide stronger antimicrobial effects than the sum of the monomer ILs. Anionic ILs are composed of existing anionic antibiotics and organic cations, being capable to enhance the solubility and bioavailability of the original form. Nonetheless, the medical application of antimicrobial ILs is limited by the toxicity. The structural optimization aided by QSAR model and combination with existing antibiotics may provide a solution to this problem and expand the application range of ILs in antimicrobial field.


Asunto(s)
Antiinfecciosos , Líquidos Iónicos , Aniones , Antibacterianos/farmacología , Antiinfecciosos/química , Antiinfecciosos/farmacología , Cationes/química , Líquidos Iónicos/química , Líquidos Iónicos/farmacología , Sales (Química)
16.
Acta Pharm Sin B ; 12(5): 2479-2493, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35646531

RESUMEN

The long-circulating effect is revisited by simultaneous monitoring of the drug payloads and nanocarriers following intravenous administration of doxorubicin (DOX)-loaded methoxy polyethylene glycol-polycaprolactone (mPEG-PCL) nanoparticles. Comparison of the kinetic profiles of both DOX and nanocarriers verifies the long-circulating effect, though of limited degree, as a result of pegylation. The nanocarrier profiles display fast clearance from the blood despite dense PEG decoration; DOX is cleared faster than the nanocarriers. The nanocarriers circulate longer than DOX in the blood, suggesting possible leakage of DOX from the nanocarriers. Hepatic accumulation is the highest among all organs and tissues investigated, which however is reversely proportionate to blood circulation time. Pegylation and reduction in particle size prove to extend circulation of drug nanocarriers in the blood with simultaneous decrease in uptake by various organs of the mononuclear phagocytic system. It is concluded that the long-circulating effect of mPEG-PCL nanoparticles is reconfirmed by monitoring of either DOX or the nanocarriers, but the faster clearance of DOX suggests possible leakage of a fraction of the payloads. The findings of this study are of potential translational significance in design of nanocarriers towards optimization of both therapeutic and toxic effects.

17.
J Invest Surg ; 35(7): 1572-1578, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35379071

RESUMEN

BACKGROUND: A cross-leg flap can be used to treat severely injured lower limbs but associated with complications. Herein, we describe a technique of a parallel cross-leg free flap combined with posterior tibial artery perforator pedicle propeller cable bridge flap for the treatment of lower extremity wounds. METHODS: The artery and veins of the free flap are anastomosed to the contralateral posterior tibial artery and vein, respectively. The vascular pedicle is wrapped with a posterior tibial artery perforator pedicle propeller flap. The legs are allowed to remain in a straight, relaxed position which is maintained with a bandage or Kirschner wire placed at the distal limbs. Pedicle division is performed around 21 days after flap creation, and the posterior artery is re-anastomosed and pedicled flap returned to its original position. RESULTS: From June 2017 to March 2020, 7 patients with lower extremity wounds and tissue loss received reconstruction with this method. The recipient vessels for all flaps were the posterior tibial artery and vein. The average operation time was 5 hours. The average time to ambulation was 4 weeks, and the average follow-up time was 13.7 months. All flaps survived, and limb salvage was successful in all patients. Patients were not uncomfortable with the limbs held in position until pedicle division, and there were no complications. At the final follow-up, the function of all limbs was normal, and the esthetic appearance was acceptable to all patients. CONCLUSIONS: The method described overcomes the disadvantages of traditional cross-leg flaps for the treatment.


Asunto(s)
Colgajos Tisulares Libres , Procedimientos de Cirugía Plástica , Traumatismos de los Tejidos Blandos , Colgajos Tisulares Libres/irrigación sanguínea , Colgajos Tisulares Libres/cirugía , Humanos , Pierna/cirugía , Extremidad Inferior/cirugía , Procedimientos de Cirugía Plástica/métodos , Trasplante de Piel/efectos adversos , Trasplante de Piel/métodos , Traumatismos de los Tejidos Blandos/etiología , Traumatismos de los Tejidos Blandos/cirugía , Arterias Tibiales/cirugía , Resultado del Tratamiento
18.
Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi ; 36(4): 446-450, 2022 Apr 15.
Artículo en Chino | MEDLINE | ID: mdl-35426284

RESUMEN

Objective: To explore the feasibility of peroneal perforating chimeric tissue flap in repairing the composite defects of calf and heel based on lower limb angiography, and the clinical effect. Methods: The digital subtraction angiography images of lower limbs of 50 patients met the selection criteria between May 2011 and October 2014 were used as the research object to observe the course of peroneal artery and its perforating vessels. Based on the observation results, between April 2015 and October 2020, the peroneal perforating chimeric tissue flap was designed to repair 7 cases of composite defects of the calf and heel. There were 5 males and 2 females with an average age of 38 years (range, 25-55 years). The causes of injury included traffic accident in 4 cases, falling from height in 2 cases, and machine strangulation in 1 case. There were 5 cases of calf skin defect and tibial defect. The size of skin defect ranged from 5 cm×3 cm to 11 cm×7 cm, and the length of bone defect was 5-8 cm. There were 2 cases of heel skin defect and calcaneal defect. The sizes of skin defects were 5.0 cm×4.0 cm and 7.5 cm×6.5 cm, and the bone defects were 3.0 cm×2.6 cm and 4.0 cm× 3.0 cm. For the calf defect, the size of skin flap ranged from 6 cm×4 cm to 12 cm×8 cm, and the length of the fibula was the same as that of the tibial defect. For the heel defect, the sizes of the skin flaps were 8.5 cm×5.5 cm and 13.0 cm×5.0 cm, and the lengths of the fibulae were 10 cm and 12 cm. Free transplantation was performed in 5 cases and pedicle transplantation in 2 cases. The wound at donor site was repaired with skin grafting or sutured directly. Results: The peroneal artery ran close to the fibula 7.25-8.40 cm below the fibula head and send out 5-7 perforating vessels, with an average of 6.5 vessels. Perforating vessels mainly appeared in four places, which were (9.75±0.91), (13.21±0.74), (18.15±1.22), and (21.40±0.75) cm below the fibular head, with the occurrence rates of 94%, 90%, 96%, and 88%, respectively. Clinical application of 7 cases of peroneal perforating chimeric tissue flap all survived, all wounds healed by first intention. The skin graft at donor site survived and the incision healed by first intention. All patients were followed up 6-36 months, with an average of 12 months. Peroneal perforator chimeric tissue flap had good shape and soft texture. X-ray films showed that the bone graft healed well, and the healing time was 6-11 months (mean, 7 months). No obvious bone resorption was observed during follow-up. Five patients had no pain when walking, and 1 had mild pain with claudication. Postoperative heel ulcers formed in 1 case and healed after wearing custom plantar pressure dispersing shoes. At 6 months after operation, 2 patients were rated as grade Ⅳ and 5 patients as grade Ⅴ according to Holden walking function score. Conclusion: The peroneal perforating vessel distribution is constant and the peroneal perforating chimeric tissue flap is safe and reliable for repairing the composite defects of calf and heel.


Asunto(s)
Colgajo Perforante , Procedimientos de Cirugía Plástica , Traumatismos de los Tejidos Blandos , Adulto , Femenino , Humanos , Masculino , Colgajo Perforante/irrigación sanguínea , Procedimientos de Cirugía Plástica/métodos , Trasplante de Piel , Traumatismos de los Tejidos Blandos/diagnóstico por imagen , Traumatismos de los Tejidos Blandos/cirugía , Arterias Tibiales/diagnóstico por imagen , Arterias Tibiales/cirugía , Resultado del Tratamiento
19.
Pharm Res ; 39(10): 2421-2430, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35352282

RESUMEN

PURPOSE: The aim of this study is to convert tretinoin (Tr), an active pharmaceutical ingredient (API), into ionic liquid for improving aqueous solubility and permeability of Tr in transdermal drug delivery applications. METHODS: Three ionic liquids of Tr (TrILs) were synthesized through neutralization reactions, which were characterized to confirm the compositions and ionic interactions. The in vitro drug release studies and skin penetration tests were carried out to assess the performance of formulations containing TrILs. RESULTS: The TrIL formed by choline and Tr at the molar ratio of 2:1 (2[Ch][Tr]), was found to have prominent solubility, stability as well as permeability. In contrast with the insoluble Tr, 2[Ch][Tr] presented as clear and transparent aqueous solution even after diluted to 14%. The aqueous solution of 2[Ch][Tr] demonstrated better permeation effect, of which the solution with 20% of 2[Ch][Tr] showed the optimal delivery efficiency in both epidermis (2.09 ± 0.18‰) and dermis (3.31 ± 0.48‰), realizing the improvement on the permeability of API. Meanwhile, TrILs can be easily fabricated as o/w emulsions as transdermal formulation. The emulsions are also able to improve the skin permeability of Tr, though the enhanced effect is inferior to TrILs solutions. CONCLUSIONS: Ionic liquid technology can be used to improve solubility and permeability of Tr, providing a high potential strategy for the development of topical formulations and the desired transdermal application of drugs.


Asunto(s)
Líquidos Iónicos , Administración Cutánea , Colina , Emulsiones/metabolismo , Líquidos Iónicos/metabolismo , Líquidos Iónicos/farmacología , Permeabilidad , Piel/metabolismo , Absorción Cutánea , Solubilidad , Tretinoina/farmacología , Agua/metabolismo
20.
Acta Pharm Sin B ; 11(8): 2416-2448, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34522593

RESUMEN

Proteins and peptides (PPs) have gradually become more attractive therapeutic molecules than small molecular drugs due to their high selectivity and efficacy, but fewer side effects. Owing to the poor stability and limited permeability through gastrointestinal (GI) tract and epithelia, the therapeutic PPs are usually administered by parenteral route. Given the big demand for oral administration in clinical use, a variety of researches focused on developing new technologies to overcome GI barriers of PPs, such as enteric coating, enzyme inhibitors, permeation enhancers, nanoparticles, as well as intestinal microdevices. Some new technologies have been developed under clinical trials and even on the market. This review summarizes the history, the physiological barriers and the overcoming approaches, current clinical and preclinical technologies, and future prospects of oral delivery of PPs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA