Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 536
Filtrar
1.
Physiol Plant ; 176(4): e14419, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38973451

RESUMEN

Abiotic stress impairs plant growth and development, thereby causing low yield and inferior quality of crops. Increasing studies reported that strigolactones (SL) are plant hormones that enhance plant stress resistance by regulating plant physiological processes and gene expressions. In this review, we introduce the response and regulatory role of SL in salt, drought, light, heat, cold and cadmium stresses in plants. This review also discusses how SL alleviate the damage of abiotic stress in plants, furthermore, introducing the mechanisms of SL enhancing plant stress resistance at the genetic level. Under abiotic stress, the exogenous SL analog GR24 can induce the biosynthesis of SL in plants, and endogenous SL can alleviate the damage caused by abiotic stress. SL enhanced the stress resistance of plants by protecting photosynthesis, enhancing the antioxidant capacity of plants and promoting the symbiosis between plants and arbuscular mycorrhiza (AM). SL interact with abscisic acid (ABA), salicylic acid (SA), auxin, cytokinin (CK), jasmonic acid (JA), hydrogen peroxide (H2O2) and other signal molecules to jointly regulate plant stress resistance. Lastly, both the importance of SL and their challenges for future work are outlined in order to further elucidate the specific mechanisms underlying the roles of SL in plant responses to abiotic stress.


Asunto(s)
Lactonas , Reguladores del Crecimiento de las Plantas , Estrés Fisiológico , Lactonas/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Plantas/metabolismo , Plantas/efectos de los fármacos , Plantas/genética , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos
2.
Heliyon ; 10(11): e32133, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38868052

RESUMEN

Carbon dots (CDs), as a new kind of fluorescent nanomaterials, show great potential for application in several fields due to their unique nano-size effect, easy surface functionalization, controllable photoluminescence, and excellent biocompatibility. Conventional preparation methods for CDs typically involve top-down and bottom-up approaches. Doping is a major step forward in CDs design methodology. Chemical doping includes both non-metal and metal doping, in which non-metal doping is an effective strategy for modulating the fluorescence properties of CDs and improving photocatalytic performance in several areas. In recent years, Metal-doped CDs have aroused the interest of academics as a promising nano-doping technique. This approach has led to improvements in the physicochemical and optical properties of CDs by altering their electron density distribution and bandgap capacity. Additionally, the issues of metal toxicity and utilization have been addressed to a large extent. In this review, we categorize metals into two major groups: transition group metals and rare-earth group metals, and an overview of recent advances in biomedical applications of these two categories, respectively. Meanwhile, the prospects and the challenges of metal-doped CDs for biomedical applications are reviewed and concluded. The aim of this paper is to break through the existing deficiencies of metal-doped CDs and fully exploit their potential. I believe that this review will broaden the insight into the synthesis and biomedical applications of metal-doped CDs.

3.
Exp Mol Med ; 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38945950

RESUMEN

The hypoxia-inducible factor-1α (HIF-1α) pathway coordinates skeletal bone homeostasis and endocrine functions. Activation of the HIF-1α pathway increases glucose uptake by osteoblasts, which reduces blood glucose levels. However, it is unclear whether activating the HIF-1α pathway in osteoblasts can help normalize glucose metabolism under diabetic conditions through its endocrine function. In addition to increasing bone mass and reducing blood glucose levels, activating the HIF-1α pathway by specifically knocking out Von Hippel‒Lindau (Vhl) in osteoblasts partially alleviated the symptoms of streptozotocin (STZ)-induced type 1 diabetes mellitus (T1DM), including increased glucose clearance in the diabetic state, protection of pancreatic ß cell from STZ-induced apoptosis, promotion of pancreatic ß cell proliferation, and stimulation of insulin secretion. Further screening of bone-derived factors revealed that islet regeneration-derived protein III gamma (RegIIIγ) is an osteoblast-derived hypoxia-sensing factor critical for protection against STZ-induced T1DM. In addition, we found that iminodiacetic acid deferoxamine (SF-DFO), a compound that mimics hypoxia and targets bone tissue, can alleviate symptoms of STZ-induced T1DM by activating the HIF-1α-RegIIIγ pathway in the skeleton. These data suggest that the osteoblastic HIF-1α-RegIIIγ pathway is a potential target for treating T1DM.

4.
Plant Cell Rep ; 43(7): 180, 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38914787

RESUMEN

KEY MESSAGE: Hydrogen sulfide improved cold resistance of tomato fruits by regulating energy metabolism and delaying cell wall degradation, thereby alleviating the damage of cold storage on fruits. Postharvest cold storage in tomato fruits extended shelf life but caused the appearance of chilling injury (CI), appeared by softness and spots on the surface of the fruits. These changes were linked closely with energy and cell wall metabolisms. Hydrogen sulfide (H2S), as the gaseous fresh-keeping regulator, was used in the present study to investigate the effects of H2S on energy and cell wall metabolisms in tomato fruits during cold storage. Fruits after harvest were fumigated with different concentrations (0, 0.5, 1, 1.5 mM) of sodium hydrosulfide (NaHS) solution as H2S honor for 24 h and stored at 4 °C for 25 days. The results showed that 1 and 1.5 mM NaHS solution fumigation promoted the accumulation of endogenous H2S, followed by the increase in L-cysteine desulfurase (LCD) and D-cysteine desulfurase (DCD) activities in fruits during cold storage. It was also found that 1 and 1.5 mM NaHS treatments improved H+-ATPase, Ca2+-ATPase, cytochrome C oxidase (CCO), and succinic dehydrogenase (SDH) activities. Moreover, the contents of cellulose and hemicellulose were increased by 1 and 1.5 mM NaHS, following down-regulated activities of cellulase (CL), pectin lyase (PL), α-mannosidase (α-man) and ß-Galactosidase (ß-Gal) and down-regulated expression of PL1, PL8, MAN4 and MAN7 genes. Thus, H2S alleviates CI led by cold storage in tomato fruits via regulating energy and cell wall metabolisms.


Asunto(s)
Pared Celular , Frío , Metabolismo Energético , Frutas , Sulfuro de Hidrógeno , Solanum lycopersicum , Pared Celular/metabolismo , Sulfuro de Hidrógeno/farmacología , Sulfuro de Hidrógeno/metabolismo , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Solanum lycopersicum/fisiología , Frutas/metabolismo , Frutas/genética , Frutas/efectos de los fármacos , Metabolismo Energético/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Almacenamiento de Alimentos/métodos , Sulfuros/farmacología , Sulfuros/metabolismo
5.
Molecules ; 29(9)2024 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-38731522

RESUMEN

Cardiovascular disease has become a common ailment that endangers human health, having garnered widespread attention due to its high prevalence, recurrence rate, and sudden death risk. Ginseng possesses functions such as invigorating vital energy, enhancing vein recovery, promoting body fluid and blood nourishment, calming the nerves, and improving cognitive function. It is widely utilized in the treatment of various heart conditions, including palpitations, chest pain, heart failure, and other ailments. Although numerous research reports have investigated the cardiovascular activity of single ginsenoside, there remains a lack of systematic research on the specific components group that predominantly contribute to cardiovascular efficacy in ginseng medicinal materials. In this research, the spectrum-effect relationship, target cell extraction, and BP neural network classification were used to establish a rapid screening system for potential active substances. The results show that red ginseng extract (RGE) can improve the decrease in cell viability and ATP content and inhibit the increase in ROS production and LDH release in OGD-induced H9c2 cells. A total of 70 ginsenosides were identified in RGE using HPLC-Q-TOF-MS/MS analysis. Chromatographic fingerprints were established for 12 batches of RGE by high-performance liquid chromatography (HPLC). A total of 36 common ingredients were found in 12 batches of RGE. The cell viability, ATP, ROS, and LDH of 12 batches RGE were tested to establish gray relationship analysis (GRA) and partial least squares discrimination analysis (PLS-DA). BP neural network classification and target cell extraction were used to narrow down the scope of Spectral efficiency analysis and screen the potential active components. According to the cell experiments, RGE can improve the cell viability and ATP content and reduce the oxidative damage. Then, seven active ingredients, namely, Ginsenoside Rg1, Rg2, Rg3, Rb1, Rd, Re, and Ro, were screened out, and their cardiovascular activity was confirmed in the OGD model. The seven ginsenosides were the main active substances of red ginseng in treating myocardial injury. This study offers a reference for quality control in red ginseng and preparations containing red ginseng for the management of cardiovascular diseases. It also provides ideas for screening active ingredients of the same type of multi-pharmacologically active traditional Chinese medicines.


Asunto(s)
Supervivencia Celular , Ginsenósidos , Redes Neurales de la Computación , Panax , Extractos Vegetales , Panax/química , Extractos Vegetales/farmacología , Extractos Vegetales/química , Ginsenósidos/farmacología , Ginsenósidos/química , Ginsenósidos/aislamiento & purificación , Supervivencia Celular/efectos de los fármacos , Ratas , Animales , Línea Celular , Especies Reactivas de Oxígeno/metabolismo , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Cromatografía Líquida de Alta Presión , Humanos , Espectrometría de Masas en Tándem
6.
Ying Yong Sheng Tai Xue Bao ; 35(3): 659-668, 2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38646753

RESUMEN

To accurately monitor the phenology of net ecosystem carbon exchange (NEE) in grasslands with remote sensing, we analyzed the variations in NEE and its phenology in the Stipa krylovii steppe and discussed the remote sensing vegetation index thresholds for NEE phenology, with the observational data from the Inner Mongolia Xilinhot National Climate Observatory's eddy covariance system and meteorological gradient observation system during 2018-2021, as well as Sentinel-2 satellite data from January 1, 2018 to December 31, 2021. Results showed that, from 2018 to 2021, NEE exhibited seasonal variations, with carbon sequestration occurring from April to October and carbon emission in other months, resulting in an overall carbon sink. The average Julian days for the start date (SCUP) and the end date (ECUP) of carbon uptake period were the 95th and 259th days, respectively, with an average carbon uptake period lasting 165 days. Photosynthetically active radiation showed a negative correlation with daily NEE, contributing to carbon absorption of grasslands. The optimal threshold for capturing SCUP was a 10% threshold of the red-edge chlorophyll index, while the normalized difference vegetation index effectively reflected ECUP with a threshold of 75%. These findings would provide a basis for remote sensing monitoring of grassland carbon source-sink dynamics.


Asunto(s)
Carbono , Ecosistema , Monitoreo del Ambiente , Pradera , Poaceae , Tecnología de Sensores Remotos , China , Carbono/metabolismo , Poaceae/metabolismo , Poaceae/crecimiento & desarrollo , Monitoreo del Ambiente/métodos , Secuestro de Carbono , Estaciones del Año , Ciclo del Carbono
7.
J Biomed Mater Res B Appl Biomater ; 112(3): e35400, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38456343

RESUMEN

Lithium disilicate (Li2 Si2 O5 ) glass-ceramics are currently a more widely used all-ceramic restorative material due to their good mechanical properties and excellent aesthetic properties. However, they have a series of problems such as high brittleness and low fracture toughness, which has become the main bottleneck restricting its development. Therefore, in order to compensate for these shortcomings, we propose to prepare a reinforced glass-ceramics with better mechanical properties and to test the biosafety and chemical solubility of the material. Li2 Si2 O5 whiskers were synthesized by a one-step hydrothermal method, and multi-scale crystal-enhanced Li2 Si2 O5 glass-ceramics were prepared by reaction sintering. The biosafety of multi-scale crystal-reinforced Li2 Si2 O5 glass-ceramics was investigated by in vitro cytotoxicity test, rabbit pyrogen test, mice bone marrow micronucleus test, skin sensitization test, sub-chronic systemic toxicity test, and chronic systemic toxicity test. Additionally, the chemical solubility of multi-scale crystal-reinforced Li2 Si2 O5 glass-ceramics was investigated. The test results showed that the material was non-cytotoxic, non-thermogenic, non-mutagenic, non-sensitizing, and non-systemic. The chemical solubility, determined to be 377 ± 245 µg/cm2 , complied with the ISO 6872 standard for the maximum solubility of ceramic materials. Multi-scale crystal-reinforced Li2 Si2 O5 glass-ceramics' biosafety and chemical solubility met current normative criteria, and they can move on to mechanical property measurements (such as flexural strength test, fatigue life test, friction and wear property study, etc.) and bonding property optimization, which shows promise for future clinical applications.


Asunto(s)
Cerámica , Contención de Riesgos Biológicos , Animales , Ratones , Conejos , Ensayo de Materiales , Solubilidad , Propiedades de Superficie , Cerámica/química , Porcelana Dental , Litio
8.
Chemistry ; 30(30): e202400946, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38516955

RESUMEN

Starfish provide important saponins with diverse bioactivities as the secondary metabolites, among which 2-O-glycosylated glycosides are commonly found. Preparation of those 1,2-trans 2-O-glycosylated glycosides usually relies on 2-O-acyl participation requiring the selective installation and cleavage of 2-O-acyl groups. A convergent synthesis using 2-O-glycosylated oligosaccharide donors would be more straightforward but also pose greater challenges. Herein, we report a convergent synthesis of a distinctive tetrasaccharide isolated from starfish Asterias rollestoni Bell. Dual 2-(diphenylphosphinoyl)acetyl (DPPA) groups at O3 and O4 on galactose moiety led to high ß-selectivities (ß/α=12/1 or ß only) in the challenging [2+2] glycosylation, giving the desired tetrasaccharides in >90 % yields from the 2-O-glycosylated disaccharide donors. These synthetic studies have also unambiguously revised the structure of these natural tetrasaccharides. This work would facilitate further studies on new inhibitors of α-glucosidase as hypoglycemic drugs.


Asunto(s)
Oligosacáridos , Animales , Glicosilación , Oligosacáridos/química , Oligosacáridos/síntesis química , Asterias/química , Glicósidos/química , Saponinas/química , Saponinas/síntesis química , alfa-Glucosidasas/metabolismo , alfa-Glucosidasas/química
9.
J Hazard Mater ; 468: 133785, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38367441

RESUMEN

BACKGROUND: Although growing evidence has shown independent links of long-term exposure to fine particulate matter (PM2.5) with cognitive impairment, the effects of its constituents remain unclear. This study aims to explore the associations of long-term exposure to ambient PM2.5 constituents' mixture with cognitive impairment in Chinese older adults, and to further identify the main contributor. METHODS: 15,274 adults ≥ 65 years old were recruited by the Chinese Longitudinal Healthy Longevity Study (CLHLS) and followed up through 7 waves during 2000-2018. Concentrations of ambient PM2.5 and its constituents (i.e., black carbon [BC], organic matter [OM], ammonium [NH4+], sulfate [SO42-], and nitrate [NO3-]) were estimated by satellite retrievals and machine learning models. Quantile-based g-computation model was employed to assess the joint effects of a mixture of 5 PM2.5 constituents and their relative contributions to cognitive impairment. Analyses stratified by age group, sex, residence (urban vs. rural), and region (north vs. south) were performed to identify vulnerable populations. RESULTS: During the average 3.03 follow-up visits (89,296.9 person-years), 4294 (28.1%) participants had developed cognitive impairment. The adjusted hazard ratio [HR] (95% confidence interval [CI]) for cognitive impairment for every quartile increase in mixture exposure to 5 PM2.5 constituents was 1.08 (1.05-1.11). BC held the largest index weight (0.69) in the positive direction in the qg-computation model, followed by OM (0.31). Subgroup analyses suggested stronger associations in younger old adults and rural residents. CONCLUSION: Long-term exposure to ambient PM2.5, particularly its constituents BC and OM, is associated with an elevated risk of cognitive impairment onset among Chinese older adults.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Disfunción Cognitiva , Humanos , Anciano , Material Particulado/toxicidad , Estudios de Cohortes , Contaminantes Atmosféricos/toxicidad , Exposición a Riesgos Ambientales , Disfunción Cognitiva/inducido químicamente , Disfunción Cognitiva/epidemiología , China/epidemiología , Contaminación del Aire/efectos adversos
10.
Integr Cancer Ther ; 23: 15347354231226108, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38240227

RESUMEN

OBJECTIVE: In China, grade 2 to 3 immune-related rash will probably lead to the interruption of immunotherapy. Corticosteroid (CS) is the main treatment, but not always effective. The external application of clearing heat and removing dampness, which is represented by Qing-Re-Li-Shi Formula (QRLSF), has been used in our hospital to treat immune-related cutaneous adverse events (ircAEs) for the last 5 years. The purpose of this study was to discuss its efficacy and safety in the treatment of grade 2 to 3 rash. METHODS: A retrospective study of patients with grade 2 to 3 immune-related rash in our hospital from December 2019 to December 2022 was conducted. These patients received QRLSF treatment. Clinical characteristics, treatment outcome, and health-related quality of life (HrQoL) were analyzed. RESULTS: Thirty patients with grade 2 to 3 rash (median onset time: 64.5 days) were included. The skin lesions of 24 cases (80%) returned to grade 1 with a median time of 8 days. The accompanying symptoms were also improved with median time of 3 to 4 days. The addition of antihistamine (AH) drug didn't increase the efficacy of QRLSF (AH + QRLSF: 75.00% vs QRLSF: 83.33%, P = .66). No significant difference was observed in the efficacy of QRLSF treatment regardless of whether patients had previously received CS therapy (untreated population: 88.24% vs treated population: 69.23%, P = .36). During 1-month follow-up, 2 cases (8.33%) underwent relapses. In terms of HrQoL, QRLSF treatment could significantly reduce the median scores of all domains of Skindex-16, including symptoms (39.58 vs 8.33, P < .0001), emotions (58.33 vs 15.48, P < .0001), functioning (46.67 vs 13.33, P < .0001) and composite (52.60 vs 14.06, P < .0001). CONCLUSION: External application of clearing heat and removing dampness was proven to be an effective and safe treatment for such patients. In the future, high-quality trials are required to determine its clinical application in the field of ircAEs.


Asunto(s)
Antígeno B7-H1 , Exantema , Receptor de Muerte Celular Programada 1 , Humanos , Antígeno B7-H1/antagonistas & inhibidores , Exantema/inducido químicamente , Exantema/tratamiento farmacológico , Calor , Ligandos , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Calidad de Vida , Estudios Retrospectivos
11.
Cancer Cell Int ; 24(1): 31, 2024 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-38218960

RESUMEN

BACKGROUND: GPR65 is a pH-sensing G-protein-coupled receptor that acts as a key innate immune checkpoint in the human tumor microenvironment, inhibiting the release of inflammatory factors and inducing significant upregulation of tissue repair genes. However, the expression pattern and function of GPR65 in osteosarcoma (OS) remain unclear. The purpose of this study was to investigate and elucidate the role of GPR65 in the microenvironment, proliferation and migration of OS. METHODS: Retrospective RNA-seq data analysis was conducted in a cohort of 97 patients with OS data in the TAEGET database. In addition, single-cell sequencing data from six surgical specimens of human OS patients was used to analyze the molecular evolution process during OS genesis. Tissues chips and bioinformatics results were used to verify GPR65 expression level in OS. MTT, colony formation, EdU assay, wound healing, transwell assay and F-actin assay were utilized to analyze cell proliferation and invasion of OS cancer cells. RNA-seq was used to explore the potential mechanism of GPR65's role in OS. RESULTS: GPR65 expression was significantly low in OS, and subgroup analysis found that younger OS patients, OS patients in metastatic status, and overall survival and progression free survival OS patients had lower GPR65 expression. From ScRNA-seq data of GSE162454, we found the expression of GPR65 is significantly positively correlated with CD4 + T cells CD8 + T cells and OS related macrophage infiltration. Verification experiment found that silencing the expression of GPR65 in osteosarcoma cells U2OS and HOS could promote the proliferation and invasion process, RNA-seq results showed that the role of GPR65 in OS cells was related to immune system, metabolism and signal transduction. CONCLUSION: The low expression of GPR65 in OS leads to high metastasis rate and poor prognosis in OS patients. The suppression of immune escape and inhibition of proliferation may be a key pathway for GPR65 to participate in the progression of OS. The current study strengthens the role of GPR65 in OS development and provides a potential biomarker for the prognosis of OS patients.

12.
J Sep Sci ; 47(1): e2300545, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38234026

RESUMEN

Pseudoallergy is a typical and common adverse drug reaction to injections, especially in traditional Chinese medicine injections (TCMIs). At present, the evaluation methods for pseudoallergy include cell methods in vitro and animal methods in vivo. The mast cell evaluation method based on the ß-hexosaminidase (ß-Hex)-catalyzed substrate, 4-nitrophenyl-ß-N-acetyl-D-glucosaminide (4-NPG), is an important method for the evaluation of drug-induced pseudoallergy, but it is prone to false positive results and has insufficient sensitivity. In this study, a novel ß-Hex evaluation system with rat basophilic leukemia-2H3 cells based on high-performance liquid chromatography-fluorescence detection (HPLC-FLD) was established, which effectively increased the sensitivity and avoided false positive results. Cell viabilities were measured by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl tetrazolium bromide assay. In addition, a method for the determination of histamine, which is another indicator in the development of pseudoallergy, was established to validate the above method. The results of this novel method indicated that two TCMIs (Shuxuening injection and Shenqi Fuzheng injection), which were considered to be pseudoallergenic using 4-NPG, were not pseudoallergenic. Overall, the novel ß-Hex/HPLC-FLD evaluation system using Rat basophilic leukemia-2H3 cells established was effective and precise. It could be used for the evaluation of pseudoallergic reactions caused by TCMIs and other injections.


Asunto(s)
Medicamentos Herbarios Chinos , Leucemia , Ratas , Animales , Medicina Tradicional China , beta-N-Acetilhexosaminidasas , Inyecciones , Histamina
13.
Adv Sci (Weinh) ; 11(5): e2305023, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38084002

RESUMEN

Destruction of cartilage due to the abnormal remodeling of subchondral bone (SB) leads to osteoarthritis (OA), and restoring chondro-bone metabolic homeostasis is the key to the treatment of OA. However, traditional intra-articular injections for the treatment of OA cannot directly break through the cartilage barrier to reach SB. In this study, the hydrothermal method is used to synthesize ultra-small size (≈5 nm) selenium-doped carbon quantum dots (Se-CQDs, SC), which conjugated with triphenylphosphine (TPP) to create TPP-Se-CQDs (SCT). Further, SCT is dynamically complexed with hyaluronic acid modified with aldehyde and methacrylic anhydride (AHAMA) to construct highly permeable micro/nano hydrogel microspheres (SCT@AHAMA) for restoring chondro-bone metabolic homeostasis. In vitro experiments confirmed that the selenium atoms scavenged reactive oxygen species (ROS) from the mitochondria of mononuclear macrophages, inhibited osteoclast differentiation and function, and suppressed early chondrocyte apoptosis to maintain a balance between cartilage matrix synthesis and catabolism. In vivo experiments further demonstrated that the delivery system inhibited osteoclastogenesis and H-vessel invasion, thereby regulating the initiation and process of abnormal bone remodeling and inhibiting cartilage degeneration in SB. In conclusion, the micro/nano hydrogel microspheres based on ultra-small quantum dots facilitate the efficient penetration of articular SB and regulate chondro-bone metabolism for OA treatment.


Asunto(s)
Cartílago Articular , Osteoartritis , Selenio , Humanos , Microesferas , Hidrogeles/metabolismo , Selenio/metabolismo , Cartílago Articular/metabolismo , Osteoartritis/tratamiento farmacológico , Osteoartritis/metabolismo
14.
Adv Sci (Weinh) ; 11(1): e2304824, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37953457

RESUMEN

A fundamental understanding of inflammation and tissue healing suggests that the precise regulation of the inflammatory phase, both in terms of location and timing, is crucial for bone regeneration. However, achieving the activation of early inflammation without causing chronic inflammation while facilitating quick inflammation regression to promote bone regeneration continues to pose challenges. This study reveals that black phosphorus (BP) accelerates bone regeneration by building an osteogenic immunological microenvironment. BP amplifies the acute pro-inflammatory response and promotes the secretion of anti-inflammatory factors to accelerate inflammation regression and tissue regeneration. Mechanistically, BP creates an osteoimmune-friendly microenvironment by stimulating macrophages to express interleukin 33 (IL-33), amplifying the inflammatory response at an early stage, and promoting the regression of inflammation. In addition, BP-mediated IL-33 expression directly promotes osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs), which further facilitates bone repair. To the knowledge, this is the first study to reveal the immunomodulatory potential of BP in bone regeneration through the regulation of both early-stage inflammatory responses and later-stage inflammation resolution, along with the associated molecular mechanisms. This discovery serves as a foundation for the clinical use of BP and is an efficient approach for managing the immune microenvironment during bone regeneration.


Asunto(s)
Interleucina-33 , Osteogénesis , Humanos , Fósforo , Regeneración Ósea , Inflamación/metabolismo
15.
Environ Sci Technol ; 58(1): 498-509, 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38103020

RESUMEN

The assessment of dissolved oxygen (DO) concentration at the sea surface is essential for comprehending the global ocean oxygen cycle and associated environmental and biochemical processes as it serves as the primary site for photosynthesis and sea-air exchange. However, limited comprehensive measurements and imprecise numerical simulations have impeded the study of global sea surface DO and its relationship with environmental challenges. This paper presents a novel spatiotemporal information embedding machine-learning framework that provides explanatory insights into the underlying driving mechanisms. By integrating extensive in situ data and high-resolution satellite data, the proposed framework successfully generated high-resolution (0.25° × 0.25°) estimates of DO concentration with exceptional accuracy (R2 = 0.95, RMSE = 11.95 µmol/kg, and test number = 2805) for near-global sea surface areas from 2010 to 2018, uncertainty estimated to be ±13.02 µmol/kg. The resulting sea surface DO data set exhibits precise spatial distribution and reveals compelling correlations with prominent marine phenomena and environmental stressors. Leveraging its interpretability, our model further revealed the key influence of marine factors on surface DO and their implications for environmental issues. The presented machine-learning framework offers an improved DO data set with higher resolution, facilitating the exploration of oceanic DO variability, deoxygenation phenomena, and their potential consequences for environments.


Asunto(s)
Monitoreo del Ambiente , Oxígeno , Monitoreo del Ambiente/métodos , Océanos y Mares , Aprendizaje Automático
16.
Biomater Sci ; 12(2): 308-329, 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38108454

RESUMEN

Bone defects are often difficult to treat due to their complexity and specificity, and therefore pose a serious threat to human life and health. Currently, the clinical treatment of bone defects is mainly surgical. However, this treatment is often more harmful to patients and there is a potential risk of rejection and infection. Hydrogels have a unique three-dimensional structure that can accommodate a variety of materials, including particles, polymers and small molecules, making them ideal for treating bone defects. Therefore, emerging composite hydrogels are considered one of the most promising candidates for the treatment of bone defects. This review describes the use of different types of composite hydrogel in the treatment of bone defects. We present the basic concepts of hydrogels, different preparation techniques (including chemical and physical crosslinking), and the clinical requirements for hydrogels used to treat bone defects. In addition, a review of numerous promising designs of different types of hydrogel doped with different materials (e.g., nanoparticles, polymers, carbon materials, drugs, and active factors) is also highlighted. Finally, the current challenges and prospects of composite hydrogels for the treatment of bone defects are presented. This review will stimulate research efforts in this field and promote the application of new methods and innovative ideas in the clinical field of composite hydrogels.


Asunto(s)
Hidrogeles , Nanopartículas , Humanos , Hidrogeles/química , Polímeros , Nanopartículas/química
17.
Small Methods ; : e2301375, 2023 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-38143276

RESUMEN

Stable regulation of protein fate is a prerequisite for successful bone tissue repair. As a ubiquitin-specific protease (USP), USP26 can stabilize the protein fate of ß-catenin to promote the osteogenic activity of mesenchymal cells (BMSCs) and significantly increased bone regeneration in bone defects in aged mice. However, direct transfection of Usp26 in vivo is inefficient. Therefore, improving the efficient expression of USP26 in target cells is the key to promoting bone tissue repair. Herein, 3D printing combined with microfluidic technology is applied to construct a functional microunit (protein fate regulating functional microunit, denoted as PFFM), which includes GelMA microspheres loaded with BMSCs overexpressing Usp26 and seeded into PCL 3D printing scaffolds. The PFFM provides a microenvironment for BMSCs, significantly promotes adhesion, and ensures cell activity and Usp26 supplementation that stabilizes ß-catenin protein significantly facilitates BMSCs to express osteogenic phenotypes. In vivo experiments have shown that PFFM effectively accelerates intervertebral bone fusion. Therefore, PFFM can provide new ideas and alternatives for using USP26 for intervertebral fusion and other hard-to-repair bone defect diseases and is expected to provide clinical translational potential in future treatments.

18.
J Vis Exp ; (201)2023 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-38009754

RESUMEN

Osteocytes are considered to be nonproliferative cells that are terminally differentiated from osteoblasts. Osteoblasts embedded in the bone extracellular matrix (osteoid) express the Pdpn gene to form cellular dendrites and transform into preosteocytes. Later, preosteocytes express the Dmp1 gene to promote matrix mineralization and thereby transform into mature osteocytes.This process is called osteocytogenesis. IDG-SW3 is a well-known cell line for in vitro studies of osteocytogenesis. Many previous methods have used collagen I as the main or the only component of the culturing matrix. However, in addition to collagen I, the osteoid also contains a ground substance, which is an important component in promoting cellular growth, adhesion, and migration. In addition, the matrix substance is transparent, which increases the transparency of the collagen I-formed gel and, thus, aids the exploration of dendrite formation through imaging techniques. Thus, this paper details a protocol to establish a 3D gel using an extracellular matrix along with collagen I for IDG-SW3 survival. In this work, dendrite formation and gene expression were analyzed during osteocytogenesis. After 7 days of osteogenic culture, an extensive dendrite network was clearly observed under a fluorescence confocal microscope. Real-time PCR showed that the mRNA levels of Pdpn and Dmp1 continually increased for 3 weeks. At week 4, the stereomicroscope revealed an opaque gel filled with mineral particles, consistent with the X-ray fluorescence (XRF) assay. These results indicate that this culture matrix successfully facilitates the transition from osteoblasts to mature osteocytes.


Asunto(s)
Matriz Extracelular , Osteoblastos , Matriz Extracelular/metabolismo , Osteocitos , Diferenciación Celular , Colágeno Tipo I/metabolismo , Técnicas de Cultivo de Célula
19.
Int J Nanomedicine ; 18: 6813-6828, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38026533

RESUMEN

Background: Carbon dots (CDs), a novel nanomaterial, have gained significant attention over the past decade due to their remarkable fluorescence properties, low toxicity, and biocompatibility. These characteristics make them promising in various applications, especially in biomedicine. However, most CDs are currently synthesized using chemical materials, and their biocompatibility falls short of natural compounds. Research on extracting CDs from natural sources is limited, and their potential in biomedicine remains largely unexplored. Methods: We extracted CDs from resveratrol, a natural plant compound, and enhanced their water solubility using citric acid. Characterization of resveratrol-based carbon dots (RES-CDs) was carried out using various techniques, including UV-Vis, SEM, TEM, FTIR, XRD, and fluorescence spectroscopy. Extensive biocompatibility tests, wound healing assays, cell migration studies, and angiogenesis experiments were conducted using human umbilical vein endothelial cells (HUVEC). In addition, we investigated the biocompatibility and wound healing potential of RES-CDs in an in vivo rat model of inflammation. Results: RES-CDs exhibited stable yellow-green fluorescence under 365-nanometer ultraviolet light and demonstrated excellent biocompatibility. In wound healing experiments, RES-CDs outperformed resveratrol in terms of cell scratch healing, migration, and tube formation. In a rat skin defect model, RES-CDs promoted wound healing and stimulated the formation of blood vessels and tissue regeneration near the wound site, as evidenced by increased CD31 and VEGF expression. Conclusion: Resveratrol-derived CDs with enhanced water solubility show superior performance in tissue healing compared to resveratrol. This discovery opens new possibilities for the clinical application of resveratrol-based carbon dots.


Asunto(s)
Carbono , Puntos Cuánticos , Ratas , Humanos , Animales , Resveratrol/farmacología , Carbono/química , Cicatrización de Heridas , Células Endoteliales de la Vena Umbilical Humana , Agua , Puntos Cuánticos/química
20.
Am J Cancer Res ; 13(9): 4246-4258, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37818048

RESUMEN

Limited research exists on factors influencing the place of death (POD) or hospital deaths among lymphoma patients in China, despite the country's significant burden of lymphoid neoplasms. This study aimed to describe the distribution of POD among lymphoma patients and identify the factors associated with hospital lymphoma deaths to provide evidence for developing targeted healthcare policies. Data in this study were obtained from the National Mortality Surveillance System (NMSS). The distribution of POD among individuals who died from lymphoma was analyzed, and factors influencing the choice of dying in the hospital were examined. Chi-square test was employed to analyze the differences in characteristic distributions. Multilevel logistic regression analysis was identify the relationship between hospital deaths due to lymphoma and individual factors, as well as socioeconomic contextual variables. During 2013-2021, there were 66772 lymphoma deaths reported by the NMSS, including 44327 patients (66.39%) who died at home and 21211 (31.77%) died in the hospital. Female patients, those had a higher level of educational attainment, retired individuals, those died of non-Hodgkin lymphoma, residents of urban areas, patients between the ages of 0 and 14, and unmarried individuals had a higher probability of dying in hospitals. Improving health care providers' understanding of palliative care for cancer patients and prioritizing accessible services are essential to enhance the quality of end-of-life care. These approaches ensure the equitable allocation of healthcare resources and provide diverse options for minorities with specific preferences regarding end-of-life care.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA