Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Materials (Basel) ; 17(9)2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38730825

RESUMEN

Medical titanium-based (Ti-based) implants in the human body are prone to infection by pathogenic bacteria, leading to implantation failure. Constructing antibacterial nanocoatings on Ti-based implants is one of the most effective strategies to solve bacterial contamination. However, single antibacterial function was not sufficient to efficiently kill bacteria, and it is necessary to develop multifunctional antibacterial methods. This study modifies medical Ti foils with Cu-doped Co3O4 rich in oxygen vacancies, and improves their biocompatibility by polydopamine (PDA/Cu-Ov-Co3O4). Under near-infrared (NIR) irradiation, nanocoatings can generate •OH and 1O2 due to Cu+ Fenton-like activity and a photodynamic effect of Cu-Ov-Co3O4, and the total reactive oxygen species (ROS) content inside bacteria significantly increases, causing oxidative stress of bacteria. Further experiments prove that the photothermal process enhances the bacterial membrane permeability, allowing the invasion of ROS and metal ions, as well as the protein leakage. Moreover, PDA/Cu-Ov-Co3O4 can downregulate ATP levels and further reduce bacterial metabolic activity after irradiation. This coating exhibits sterilization ability against both Escherichia coli and Staphylococcus aureus with an antibacterial rate of ca. 100%, significantly higher than that of bare medical Ti foils (ca. 0%). Therefore, multifunctional synergistic antibacterial nanocoating will be a promising strategy for preventing bacterial contamination on medical Ti-based implants.

2.
J Colloid Interface Sci ; 664: 309-318, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38479267

RESUMEN

Although lots of nanomaterials modified anodes have been reported to improve the bacterial attachment and extracellular electron transfer (EET) in microbial fuel cells (MFCs), the lack of a three dimensional (3D) conductive and capacitive network severely limited MFCs performance. In this work, 3D conductive networks derived from mucor mycelia were grown on carbon cloth (CC), and capacitive FeMn phosphides/oxides were further anchored on these 3D networks by electrochemical deposition (denoted as FeMn/CMM@CC) to simultaneously address the above challenges. As a result, the multivalent metal active sites were evenly distributed on 3D conductive network, which favored the enrichment of exoelectrogens, mass transport and EET. Consequently, the as-prepared FeMn/CMM@CC anode displayed accumulated charge of 131.4C/m2, higher than bare CC. Meanwhile, FeMn/CMM@CC anode substantially promoted flavin excretion and the amounts of nano conduits. The abundance of Geobacter was 63 % on bare CC, and greatly increased to 83 % on FeMn/CMM@CC. MFCs equipped by FeMn/CMM@CC anode presented the power density of 3.06 W/m2 and coulombic efficiency (29.9 %), evidently higher than bare CC (1.29 W/m2, 7.3 %), and the daily chemical oxygen demand (COD) removal amount also increased to 92.6 mg/L/d. This work developed a facile method to optimize the abiotic-biotic interface by introducing 3D conductive and capacitive network, which was proved to be a promising strategy to modify macro-porous electrodes.


Asunto(s)
Fuentes de Energía Bioeléctrica , Fuentes de Energía Bioeléctrica/microbiología , Electrones , Conductividad Eléctrica , Carbono/química , Transporte de Electrón , Electrodos , Electricidad
3.
J Colloid Interface Sci ; 648: 327-337, 2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37301157

RESUMEN

Commonly used dense arrays of nanomaterials on carbon cloth (CC) are not suitable to accommodate microorganisms in microbial fuel cells (MFCs) due to their unmatched size. To simultaneously enrich exoelectrogens and accelerate the extracellular electron transfer (EET) process, SnS2 nanosheets were selected as sacrificial templates to prepare binder-free N,S-codoped carbon microflowers (N,S-CMF@CC) by polymer coating and pyrolysis. N,S-CMF@CC showed a cumulative total charge of 125.70C/m2, approximately 2.11 times higher than that of CC, indicating its better electricity storage capacity. Moreover, the interface transfer resistance and diffusion coefficient in bioanodes were 42.68 Ω and 9.27 × 10-10 cm2/s, respectively, superior to CC (141.3 Ω and 1.06 × 10-11 cm2/s). Remarkably, N,S-codoped carbon microflowers excreted more flavin than CC, as confirmed by continuous fluorescence monitoring. Biofilm and 16S rRNA gene sequence analysis revealed that exoelectrogens were enriched, and nanoconduits were generated on the N,S-CMF@CC anode. In particular, flavin excretion was also promoted on our hierarchical electrode, effectively driving the EET process. MFCs equipped with the N,S-CMF@CC anode could deliver a power density of 2.50 W/m2, coulombic efficiency of 22.77 %, and chemical oxygen demand (COD) removal amount of 90.72 mg/L/d, higher than that of bare CC. These findings not only demonstrate that our anode is capable of solving the cell enrichment issue, but it may also increase EET rates by bound flavin with outer membrane c-type cytochromes (OMCs) to simultaneously boost the power generation and wastewater treatment performance of MFCs.


Asunto(s)
Fuentes de Energía Bioeléctrica , Carbono/química , Electricidad , ARN Ribosómico 16S , Electrodos , Compuestos Orgánicos
4.
ACS Appl Mater Interfaces ; 14(31): 35809-35821, 2022 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-35912639

RESUMEN

Microbial fuel cells (MFCs) are promising ecofriendly techniques for harvesting bioenergy from organic and inorganic matter. Currently, it is challenging to design MFC anodes with favorable microorganism attachment and fast extracellular electron transfer (EET) rate for high MFC performance. Here we prepared N-doped carbon nanotubes (NCNTs) on carbon felt (CF) and used it as a support for growing hierarchical Co8FeS8-FeCo2O4/NCNTs core-shell nanostructures (FeCo/NCNTs@CF). We observed improved wettability, specific areal capacitance, and diffusion coefficient, as well as small charge transfer resistance compared with bare CF. MFCs equipped with FeCo/NCNTs@CF displayed a power density of 3.04 W/m2 and COD removal amount of 221.0 mg/L/d, about 47.6 and 290.1% improvements compared with that of CF. Biofilm morphology and 16s rRNA gene sequence analysis proved that our anode facilitated the enrichment growth of exoelectrogens. Flavin secretion was also promoted on our hierarchical elelctrode, effectively driving the EET process. This work disclosed that hierarchical nanomaterials modified electrode with tailored physicochemical properties is a promising platform to simultaneously enhance exoelectrogen attachment and EET efficiency for MFCs.


Asunto(s)
Fuentes de Energía Bioeléctrica , Nanotubos de Carbono , Electricidad , Electrodos , Transporte de Electrón , Nanotubos de Carbono/química , ARN Ribosómico 16S
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA