Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 493
Filtrar
1.
Gene ; 930: 148842, 2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-39134100

RESUMEN

BACKGROUND: Early detection and treatment of colorectal cancer (CRC) is crucial for improving patient survival rates. This study aims to identify signature molecules associated with CRC, which can serve as valuable indicators for clinical hematological screening. METHOD: We have systematically searched the Human Protein Atlas database and the relevant literature for blood protein-coding genes. The CRC dataset from TCGA was used to compare the acquired genes and identify differentially expressed molecules (DEMs). Weighted Gene Co-expression Network Analysis (WGCNA) was employed to identify modules of co-expressed molecules and key molecules within the DEMs. Signature molecules of CRC were then identified from the key molecules using machine learning. These findings were further validated in clinical samples. Finally, Logistic regression was used to create a predictive model that calculated the likelihood of CRC in both healthy individuals and CRC patients. We evaluated the model's sensitivity and specificity using the ROC curve. RESULT: By utilizing the CRC dataset, WGCNA analysis, and machine learning, we successfully identified seven signature molecules associated with CRC from 1478 blood protein-coding genes. These markers include S100A11, INHBA, QSOX2, MET, TGFBI, VEGFA and CD44. Analyzing the CRC dataset showed its potential to effectively discriminate between CRC and normal individuals. The up-regulated expression of these markers suggests the existence of an immune evasion mechanism in CRC patients and is strongly correlated with poor prognosis. CONCLUSION: The combined detection of the seven signature molecules in CRC can significantly enhance diagnostic efficiency and serve as a novel index for hematological screening of CRC.

2.
iScience ; 27(8): 110496, 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39100694

RESUMEN

Pancreatic cancer is highly lethal with limited effective treatments. This study explores the therapeutic effects of eupalinolide B (EB) from Eupatorium lindleyanum DC on pancreatic cancer cells. Through cellular functional assays, we observed that EB effectively inhibits cell viability, proliferation, migration, and invasion. In a xenograft mouse model, EB treatment resulted in reduced pancreatic cancer tumor growth and decreased expression of Ki-67. Mechanistically, EB induces apoptosis, elevates reactive oxygen species (ROS) levels, and disrupts copper homeostasis. RNA sequencing (RNA-seq) and gene set enrichment analysis (GSEA) identified copper ion binding pathways and potential involvement in cuproptosis. Furthermore, EB enhances the cytotoxic effects of elesclomol (ES), increasing ROS levels in a copper-dependent manner and exhibiting synergistic cytotoxicity. These findings suggest that EB, either alone or in combination with ES, represents a promising strategy for targeting metal ion dysregulation and inducing potential cuproptosis in pancreatic cancer, offering a potential improvement in therapeutic outcomes.

4.
Thorac Cancer ; 15(22): 1705-1713, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39031011

RESUMEN

BACKGROUND: To review the changes and survey on status quo of the surgical treatment for esophageal cancer in China. The differences in diagnosis and treatment for esophageal cancer among hospitals in different regions across China were also investigated. METHODS: We sent questionnaires to 46 hospitals across China, investigating the volume of esophageal cancer surgeries, surgical procedures, and perioperative management under the guidance of esophageal surgery chiefs. RESULTS: A total of 46 questionnaires were sent out and collected. The survey results showed that in the past 5 years, the volume of surgeries for esophageal cancer remained stable by 23.9% of those hospitals, increased by 30.4%, and decreased by 45.7%. Of those patients treated by surgery, 19.1% were in the early stages, and 80.9% were in locally advanced stages. In terms of surgical procedures, 73.4% of the patients were treated by minimally invasive surgery and 85.7% of esophageal substitutes were a gastric conduit, 93.1% of the substitutes were pulled to the neck through the esophageal bed. For the lymph node dissection, 78.5% of the patients had a complete two-field lymph node dissection including the para-recurrent laryngeal nerve lymph nodes. Of the patients with neoadjuvant therapy, 53.5% received chemotherapy or chemotherapy plus immunotherapy (47.0%), and 43.5% had chemoradiation. CONCLUSIONS: Currently, in China, minimally invasive surgery-oriented multimodality treatment, including complete two-field lymph node dissection, has become the standard approach for esophageal cancer management. Over the past decade, this standardized approach has significantly improved prognosis compared to previous decades.


Asunto(s)
Neoplasias Esofágicas , Humanos , Neoplasias Esofágicas/cirugía , Neoplasias Esofágicas/patología , China/epidemiología , Encuestas y Cuestionarios , Masculino , Femenino , Esofagectomía/métodos , Esofagectomía/estadística & datos numéricos
5.
Mol Med Rep ; 30(3)2024 09.
Artículo en Inglés | MEDLINE | ID: mdl-38994764

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) is an extremely aggressive form of cancer with a low survival rate. A successful treatment strategy should not be limited to targeting cancer cells alone, but should adopt a more comprehensive approach, taking into account other influential factors. These include the extracellular matrix (ECM) and immune microenvironment, both of which are integral components of the tumor microenvironment. The present review describes the roles of pancreatic stellate cells, differentiated cancer­associated fibroblasts and the interleukin family, either independently or in combination, in the progression of precursor lesions in pancreatic intraepithelial neoplasia and PDAC. These elements contribute to ECM deposition and immunosuppression in PDAC. Therapeutic strategies that integrate interleukin and/or stromal blockade for PDAC immunomodulation and fibrogenesis have yielded inconsistent results. A deeper comprehension of the intricate interplay between fibrosis, and immune responses could pave the way for more effective treatment targets, by elucidating the mechanisms and causes of ECM fibrosis during PDAC progression.


Asunto(s)
Carcinoma Ductal Pancreático , Fibrosis , Interleucinas , Neoplasias Pancreáticas , Células Estrelladas Pancreáticas , Microambiente Tumoral , Humanos , Carcinoma Ductal Pancreático/inmunología , Carcinoma Ductal Pancreático/patología , Carcinoma Ductal Pancreático/metabolismo , Células Estrelladas Pancreáticas/metabolismo , Células Estrelladas Pancreáticas/patología , Microambiente Tumoral/inmunología , Neoplasias Pancreáticas/inmunología , Neoplasias Pancreáticas/patología , Neoplasias Pancreáticas/metabolismo , Interleucinas/metabolismo , Interleucinas/inmunología , Animales , Matriz Extracelular/metabolismo , Fibroblastos Asociados al Cáncer/metabolismo , Fibroblastos Asociados al Cáncer/inmunología , Fibroblastos Asociados al Cáncer/patología
6.
Int Immunopharmacol ; 138: 112625, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-38996666

RESUMEN

Glioblastoma (GBM) remains the most lethal primary brain tumor, characterized by dismal survival rates. Novel molecular targets are urgently required to enhance therapeutic outcomes. A combination of bioinformatics analysis and experimental validation was employed to investigate the role of EGFLAM in GBM. The Chinese Glioma Genome Atlas provided a platform for gene expression profiling, while siRNA-mediated knockdown and overexpression assays in GBM cell lines, alongside in vivo tumorigenesis models, facilitated functional validation. EGFLAM was found to be significantly overexpressed in GBM tissues, correlating with adverse prognostic factors and higher tumor grades, particularly in patients over the age of 41. Functional assays indicated that EGFLAM is vital for maintaining GBM cell proliferation, viability, and invasiveness. Knockdown of EGFLAM expression led to a marked decrease in tumorigenic capabilities. Proteomic interactions involving EGFLAM, such as with NUP205, were implicated in cell cycle regulation, providing insight into its oncogenic mechanism. In vivo studies further demonstrated that silencing EGFLAM expression could inhibit tumor growth, underscoring its therapeutic potential. The study identifies EGFLAM as a pivotal oncogenic factor in GBM, serving as both a prognostic biomarker and a viable therapeutic target. These findings lay the groundwork for future research into EGFLAM-targeted therapies, aiming to improve clinical outcomes for GBM patients.


Asunto(s)
Biomarcadores de Tumor , Neoplasias Encefálicas , Proliferación Celular , Glioblastoma , Humanos , Glioblastoma/genética , Glioblastoma/terapia , Glioblastoma/metabolismo , Glioblastoma/patología , Animales , Línea Celular Tumoral , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/terapia , Neoplasias Encefálicas/metabolismo , Pronóstico , Femenino , Masculino , Regulación Neoplásica de la Expresión Génica , Ratones , Ratones Desnudos , Persona de Mediana Edad , Adulto , Ensayos Antitumor por Modelo de Xenoinjerto , Terapia Molecular Dirigida
7.
Front Endocrinol (Lausanne) ; 15: 1408312, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38828409

RESUMEN

Pancreatic cancer is difficult to diagnose early and progresses rapidly. Researchers have found that a cytokine called Interleukin-6 (IL-6) is involved in the entire course of pancreatic cancer, promoting its occurrence and development. From the earliest stages of pancreatic intraepithelial neoplasia to the invasion and metastasis of pancreatic cancer cells and the appearance of tumor cachexia, IL-6 drives oncogenic signal transduction pathways and immune escape that accelerate disease progression. IL-6 is considered a biomarker for pancreatic cancer diagnosis and prognosis, as well as a potential target for treatment. IL-6 antibodies are currently being explored as a hot topic in oncology. This article aims to systematically explain how IL-6 induces the deterioration of normal pancreatic cells, with the goal of finding a breakthrough in pancreatic cancer diagnosis and treatment.


Asunto(s)
Progresión de la Enfermedad , Interleucina-6 , Neoplasias Pancreáticas , Humanos , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patología , Interleucina-6/metabolismo , Animales , Transducción de Señal , Biomarcadores de Tumor/metabolismo , Pronóstico
8.
J Neurosci Methods ; 408: 110181, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38823594

RESUMEN

BACKGROUND: Ex vivo cultures of retinal explants are appropriate models for translational research. However, one of the difficult problems of retinal explants ex vivo culture is that their nutrient supply needs cannot be constantly met. NEW METHOD: This study evaluated the effect of perfused culture on the survival of retinal explants, addressing the challenge of insufficient nutrition in static culture. Furthermore, exosomes secreted from retinal organoids (RO-Exos) were stained with PKH26 to track their uptake in retinal explants to mimic the efficacy of exosomal drugs in vivo. RESULTS: We found that the retinal explants cultured with perfusion exhibited significantly higher viability, increased NeuN+ cells, and reduced apoptosis compared to the static culture group at Days Ex Vivo (DEV) 4, 7, and 14. The perfusion-cultured retinal explants exhibited reduced mRNA markers for gliosis and microglial activation, along with lower expression of GFAP and Iba1, as revealed by immunostaining. Additionally, RNA-sequencing analysis showed that perfusion culture mainly upregulated genes associated with visual perception and photoreceptor cell maintenance while downregulating the immune system process and immune response. RO-Exos promoted the uptake of PKH26-labelled exosomes and the growth of retinal explants in perfusion culture. COMPARISON WITH EXISTING METHODS: Our perfusion culture system can provide a continuous supply of culture medium to achieve steady-state equilibrium in retinal explant culture. Compared to traditional static culture, it better preserves the vitality, provides better neuroprotection, and reduces glial activation. CONCLUSIONS: This study provides a promising ex vivo model for further studies on degenerative retinal diseases and drug screening.


Asunto(s)
Exosomas , Organoides , Retina , Animales , Organoides/metabolismo , Retina/citología , Retina/metabolismo , Exosomas/metabolismo , Perfusión/métodos , Ratones , Ratones Endogámicos C57BL , Técnicas de Cultivo de Tejidos/métodos , Supervivencia Celular/fisiología , Supervivencia Celular/efectos de los fármacos
9.
PLoS One ; 19(6): e0304686, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38837998

RESUMEN

Microplastics, which are tiny plastic particles less than 5 mm in diameter, are widely present in the environment, have become a serious threat to aquatic life and human health, potentially causing ecosystem disorders and health problems. The present study aimed to investigate the effects of microplastics, specifically microplastics-polystyrene (MPs-PS), on the structural integrity, gene expression related to tight junctions, and gut microbiota in mice. A total of 24 Kunming mice aged 30 days were randomly assigned into four groups: control male (CM), control female (CF), PS-exposed male (PSM), and PS-exposed female (PSF)(n = 6). There were significant differences in villus height, width, intestinal surface area, and villus height to crypt depth ratio (V/C) between the PS group and the control group(C) (p <0.05). Gene expression analysis demonstrated the downregulation of Claudin-1, Claudin-2, Claudin-15, and Occludin, in both duodenum and jejunum of the PS group (p < 0.05). Analysis of microbial species using 16S rRNA sequencing indicated decreased diversity in the PSF group, as well as reduced diversity in the PSM group at various taxonomic levels. Beta diversity analysis showed a significant difference in gut microbiota distribution between the PS-exposed and C groups (R2 = 0.113, p<0.01), with this difference being more pronounced among females exposed to MPs-PS. KEGG analysis revealed enrichment of differential microbiota mainly involved in seven signaling pathways, such as nucleotide metabolism(p<0.05). The relative abundance ratio of transcriptional pathways was significantly increased for the PSF group (p<0.01), while excretory system pathways were for PSM group(p<0.05). Overall findings suggest that MPs-PS exhibit a notable sex-dependent impact on mouse gut microbiota, with a stronger effect observed among females; reduced expression of tight junction genes may be associated with dysbiosis, particularly elevated levels of Prevotellaceae.


Asunto(s)
Microbioma Gastrointestinal , Microplásticos , Poliestirenos , Uniones Estrechas , Animales , Microbioma Gastrointestinal/efectos de los fármacos , Microplásticos/toxicidad , Poliestirenos/toxicidad , Ratones , Masculino , Femenino , Uniones Estrechas/efectos de los fármacos , Uniones Estrechas/metabolismo , ARN Ribosómico 16S/genética , Mucosa Intestinal/efectos de los fármacos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiología , Ocludina/metabolismo , Ocludina/genética , Claudinas/genética , Claudinas/metabolismo , Claudina-1/genética , Claudina-1/metabolismo , Proteínas de Uniones Estrechas/metabolismo , Proteínas de Uniones Estrechas/genética
10.
J Ethnopharmacol ; 333: 118465, 2024 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-38944360

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Cistanche deserticola is a kind of parasitic plant living in the roots of desert trees. It is a rare Chinese medicine, which has the effect of tonifying kidney Yang, benefiting essence and blood and moistening the intestinal tract. Cistache deserticola phenylethanoid glycoside (PGS), an active component found in Cistanche deserticola Ma, have potential kidney tonifying, intellectual enhancing, and neuroprotective effects. Cistanche total glycoside capsule has been marketed to treat vascular dementia disease. AIM OF THE STUDY: To identify the potential renal, intellectual enhancing and neuroprotective effects of PGS and explore the exact targets and mechanisms of PGS. MATERIALS AND METHODS: This study systematically investigated the four types of pathways leading to ferroptosis through transcriptome, metabolome, ultrastructure and molecular biology techniques and explored the molecular mechanism by which multiple PGS targets and pathways synergistically exert neuroprotective effects on hypoxia. RESULTS: PGS alleviated learning and memory dysfunction and pathological injury in mice exposed to hypobaric hypoxia by attenuating hypobaric hypoxia-induced hippocampal histopathological damage, impairing blood‒brain barrier integrity, increasing oxidative stress levels, and increasing the expression of cognitive proteins. PGS reduced the formation of lipid peroxides and improved ferroptosis by upregulating the GPX-4/SCL7A311 axis and downregulating the ACSL4/LPCAT3/LOX axis. PGS also reduced ferroptosis by facilitating cellular Fe2+ efflux and regulating mitochondrial Fe2+ transport and effectively antagonized cell ferroptosis induced by erastin (a ferroptosis inducer). CONCLUSIONS: This study demonstrated the mechanism by which PGS prevents hypobaric hypoxic nerve injury through four types of ferroptosis pathways, achieved neuroprotective effects and alleviated learning and memory dysfunction in hypobaric hypoxia mice. This study provides a theoretical basis for the development and application of PGS.


Asunto(s)
Cistanche , Ferroptosis , Glicósidos , Fármacos Neuroprotectores , Animales , Ferroptosis/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/aislamiento & purificación , Cistanche/química , Ratones , Glicósidos/farmacología , Glicósidos/aislamiento & purificación , Masculino , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Ratones Endogámicos C57BL , Estrés Oxidativo/efectos de los fármacos , Hipoxia/tratamiento farmacológico , Hipoxia/metabolismo , Trastornos de la Memoria/tratamiento farmacológico
11.
Nat Prod Res ; : 1-7, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38726924

RESUMEN

Two new phenylpropanoids, ainsbons A and B (1 and 2), along with a known analogue coniferyl diisovalerate (3) were isolated from the whole plant of Ainsliaea bonatii. Their structures were elucidated by analysis of NMR spectroscopic data and HRESIMS, and the absolute configuration of 2 was established by the optical rotation calculations. Compounds 1-3 were evaluated for their effects on LPS-induced nitric oxide production, and 1 and 3 showed inhibitory activities with IC50 values of 43.43 and 7.57 µM, respectively.

12.
Int J Mol Sci ; 25(10)2024 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-38791295

RESUMEN

To achieve the environmentally friendly and rapid green synthesis of efficient and stable AgNPs for drug-resistant bacterial infection, this study optimized the green synthesis process of silver nanoparticles (AgNPs) using Dihydromyricetin (DMY). Then, we assessed the impact of AgNPs on zebrafish embryo development, as well as their therapeutic efficacy on zebrafish infected with Methicillin-resistant Staphylococcus aureus (MRSA). Transmission electron microscopy (TEM) and dynamic light-scattering (DLS) analyses revealed that AgNPs possessed an average size of 23.6 nm, a polymer dispersity index (PDI) of 0.197 ± 0.0196, and a zeta potential of -18.1 ± 1.18 mV. Compared to other published green synthesis products, the optimized DMY-AgNPs exhibited smaller sizes, narrower size distributions, and enhanced stability. Furthermore, the minimum concentration of DMY-AgNPs required to affect zebrafish hatching and survival was determined to be 25.0 µg/mL, indicating the low toxicity of DMY-AgNPs. Following a 5-day feeding regimen with DMY-AgNP-containing food, significant improvements were observed in the recovery of the gills, intestines, and livers in MRSA-infected zebrafish. These results suggested that optimized DMY-AgNPs hold promise for application in aquacultures and offer potential for further clinical use against drug-resistant bacteria.


Asunto(s)
Antibacterianos , Flavonoles , Tecnología Química Verde , Nanopartículas del Metal , Staphylococcus aureus Resistente a Meticilina , Plata , Pez Cebra , Animales , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Nanopartículas del Metal/química , Plata/química , Plata/farmacología , Flavonoles/farmacología , Flavonoles/química , Tecnología Química Verde/métodos , Antibacterianos/farmacología , Antibacterianos/química , Antibacterianos/síntesis química , Infecciones Estafilocócicas/tratamiento farmacológico , Pruebas de Sensibilidad Microbiana
13.
Artículo en Inglés | MEDLINE | ID: mdl-38716541

RESUMEN

Glioblastoma (GBM), the most aggressive and fatal brain malignancy, is largely driven by a subset of tumor cells known as cancer stem cells (CSCs). CSCs possess stem cell-like properties, including self-renewal, proliferation, and differentiation, making them pivotal for tumor initiation, invasion, metastasis, and overall tumor progression. The regulation of CSCs is primarily controlled by transcription factors (TFs) which regulate the expressions of genes involved in maintaining stemness and directing differentiation. This review aims to provide a comprehensive overview of the role of TFs in regulating CSCs in GBM. The discussion encompasses the definitions of CSCs and TFs, the significance of glioma stem cells (GSCs) in GBM, and how TFs regulate GSC self-renewal, proliferation, differentiation, and transformation. The potential for developing TF-targeted GSC therapies is also explored, along with future research directions. By understanding the regulation of GSCs by TFs, we may uncover novel diagnostic and therapeutic strategies against this devastating disease of GBM.

14.
World J Psychiatry ; 14(5): 686-694, 2024 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-38808082

RESUMEN

BACKGROUND: Insomnia is among the most common sleep disorders worldwide. Insomnia in older adults is a social and public health problem. Insomnia affects the physical and mental health of elderly hospitalized patients and can aggravate or induce physical illnesses. Understanding subjective feelings and providing reasonable and standardized care for elderly hospitalized patients with insomnia are urgent issues. AIM: To explore the differences in self-reported outcomes associated with insomnia among elderly hospitalized patients. METHODS: One hundred patients admitted to the geriatric unit of our hospital between June 2021 and December 2021 were included in this study. Self-reported symptoms were assessed using the Athens Insomnia Scale (AIS), Generalized Anxiety Disorder Scale-7 (GAD-7), Geriatric Depression Scale-15 (GDS-15), Memorial University of Newfoundland Scale of Happiness (MUNSH), Barthel Index Evaluation (BI), Morse Fall Scale (MFS), Mini-Mental State Examination, and the Short Form 36 Health Survey Questionnaire (SF-36). Correlation coefficients were used to analyze the correlation between sleep quality and self-reported symptoms. Effects of insomnia was analyzed using Logistic regression analysis. RESULTS: Nineteen patients with AIS ≥ 6 were included in the insomnia group, and the incidence of insomnia was 19% (19/100). The remaining 81 patients were assigned to the non-insomnia group. There were significant differences between the two groups in the GDA-7, GDS-15, MUNSH, BI, MFS, and SF-36 items (P < 0.05). Patients in the insomnia group were more likely to experience anxiety, depression, and other mental illnesses, as well as difficulties with everyday tasks and a greater risk of falling (P < 0.05). Subjective well-being and quality of life were poorer in the insomnia group than in the control group. The AIS scores positively correlated with the GAD-7, GDS-15, and MFS scores in elderly hospitalized patients with insomnia (P < 0.05). Logistic regression analysis showed that GDS-15 ≥ 5 was an independent risk factor for insomnia in elderly hospitalized patients (P < 0.05). CONCLUSION: The number of self-reported symptoms was higher among elderly hospitalized patients with insomnia. Therefore, we should focus on the main complaints of patients to meet their care needs.

15.
J Control Release ; 371: 258-272, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38815704

RESUMEN

Currently, exosomes showed appropriate potential in the repair of skin injury. However, the functions of the exosomes could be compromised rapidly due to their short half-life and high clearance rate in vivo. In addition, the controlled release of effective concentrations of exosomes could increase the utilization efficiency of exosomes in wound healing. Accordingly, the design of an effective system for the controlled delivery of exosomes during the wound treatment period was necessary. In this contribution, we designed a novel exosome-based multifunctional nanocomposite platform with photothermal-controlled release performance for the repair of skin injury. Based on the agarose hydrogel, two-dimensional Ti3C2 (Ti3C2 MXene) and human umbilical cord mesenchymal stem cell (hucMSC)-derived exosomes, the as-prepared platform (i.e., hucMSC-derived exosome/Ti3C2 MXene hydrogel) was synthesized for the first time. Apart from possessing injectability, the hucMSC-derived exosome/Ti3C2 MXene hydrogel utilized the excellent photothermal effect of Ti3C2 MXene and proper phase transition performance of agarose hydrogel to provide a photothermal-controlled release system for the hucMSC-derived exosomes, which was beneficial for the personalized on-demand drug delivery. Importantly, the hucMSC-derived exosomes maintained their inherent structure and activity after being released from the Ti3C2 MXene hydrogel. Additionally, the as-prepared hydrogel with multifunctional performance also presented remarkable biocompatibility and photothermal-antibacterial property, and could efficiently accelerate wound healing by promoting cell proliferation, angiogenesis, collagen deposition, and reducing the level of inflammation at the wound site. The results suggested that the exosome-based multifunctional nanocomposite platform with great potential for wound healing would make significant advances in the revolution of traditional treatment methods in skin injury.


Asunto(s)
Preparaciones de Acción Retardada , Exosomas , Hidrogeles , Células Madre Mesenquimatosas , Nanocompuestos , Piel , Cicatrización de Heridas , Humanos , Cicatrización de Heridas/efectos de los fármacos , Animales , Nanocompuestos/administración & dosificación , Nanocompuestos/química , Hidrogeles/administración & dosificación , Hidrogeles/química , Piel/lesiones , Piel/metabolismo , Titanio/química , Ratones , Masculino , Antibacterianos/administración & dosificación , Sistemas de Liberación de Medicamentos
16.
Biomed Pharmacother ; 174: 116470, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38565061

RESUMEN

ERCC2 plays a pivotal role in DNA damage repair, however, its specific function in cancer remains elusive. In this study, we made a significant breakthrough by discovering a substantial upregulation of ERCC2 expression in glioblastoma (GBM) tumor tissue. Moreover, elevated levels of ERCC2 expression were closely associated with poor prognosis. Further investigation into the effects of ERCC2 on GBM revealed that suppressing its expression significantly inhibited malignant growth and migration of GBM cells, while overexpression of ERCC2 promoted tumor cell growth. Through mechanistic studies, we elucidated that inhibiting ERCC2 led to cell cycle arrest in the G0/G1 phase by blocking the CDK2/CDK4/CDK6/Cyclin D1/Cyclin D3 pathway. Notably, we also discovered a direct link between ERCC2 and CDK4, a critical protein in cell cycle regulation. Additionally, we explored the potential of TRAIL, a low-toxicity death ligand cytokine with anticancer properties. Despite the typical resistance of GBM cells to TRAIL, tumor cells undergoing cell cycle arrest exhibited significantly enhanced sensitivity to TRAIL. Therefore, we devised a combination strategy, employing TRAIL with the nanoparticle DMC-siERCC2, which effectively suppressed the GBM cell proliferation and induced apoptosis. In summary, our study suggests that targeting ERCC2 holds promise as a therapeutic approach to GBM treatment.


Asunto(s)
Puntos de Control del Ciclo Celular , Proliferación Celular , Glioblastoma , Nanopartículas , Ligando Inductor de Apoptosis Relacionado con TNF , Proteína de la Xerodermia Pigmentosa del Grupo D , Glioblastoma/tratamiento farmacológico , Glioblastoma/patología , Glioblastoma/metabolismo , Humanos , Línea Celular Tumoral , Puntos de Control del Ciclo Celular/efectos de los fármacos , Nanopartículas/química , Ligando Inductor de Apoptosis Relacionado con TNF/farmacología , Ligando Inductor de Apoptosis Relacionado con TNF/metabolismo , Proliferación Celular/efectos de los fármacos , Proteína de la Xerodermia Pigmentosa del Grupo D/metabolismo , Proteína de la Xerodermia Pigmentosa del Grupo D/genética , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/genética , Animales , Apoptosis/efectos de los fármacos , Ratones Desnudos , Masculino
17.
Ann Anat ; 254: 152262, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38582236

RESUMEN

BACKGROUND: The perforator flap has garnered significant interest since its inception due to its advantage of not needing a vascular network at the deep fascial level. Perforator flaps are commonly utilized in different flap transplant surgeries, and the thigh flap is presently the most widely used perforator flap. Is it possible for the calf to replace the thigh as a more suitable site for harvesting materials? Currently, there is a lack of relevant anatomical research. This study aims to address this question from an anatomical and imaging perspective. METHODS: This study used cadavers to observe the branches and courses of perforators on the calf and the distribution of skin branches using microdissection techniques, digital X-ray photography, and micro-computed tomography techniques. RESULTS: The perforators had three main branches: the vertical cutaneous branch, the oblique cutaneous branch, and the superficial fascial branch. The superficial fascial branch traveled in the superficial fascia and connected with the nearby perforators. The vertical and oblique cutaneous branches entered the subdermal layer and connected with each other to create the subdermal vascular network. CONCLUSIONS: We observed an intact calf cutaneous branch chain between the cutaneous nerve and the perforator of the infrapopliteal main artery at the superficial vein site. Utilizing this anatomical structure, the calfskin branch has the potential to serve as a substitute for thigh skin flap transplantation and may be applied to perforator flap transplantation in more locations.


Asunto(s)
Cadáver , Pierna , Colgajo Perforante , Humanos , Colgajo Perforante/irrigación sanguínea , Pierna/irrigación sanguínea , Pierna/anatomía & histología , Masculino , Piel/irrigación sanguínea , Piel/anatomía & histología , Femenino , Anciano , Microtomografía por Rayos X
18.
Acad Radiol ; 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38614827

RESUMEN

RATIONALE AND OBJECTIVES: Gliomas are aggressive brain tumors with a poor prognosis. Assessing treatment response is challenging because magnetic resonance imaging (MRI) may not distinguish true progression (TP) from pseudoprogression (PsP). This review aims to discuss imaging techniques and liquid biopsies used to distinguish TP from PsP. MATERIALS AND METHODS: This review synthesizes existing literature to examine advances in imaging techniques, such as magnetic resonance diffusion imaging (MRDI), perfusion-weighted imaging (PWI) MRI, and liquid biopsies, for identifying TP or PsP through tumor markers and tissue characteristics. RESULTS: Advanced imaging techniques, including MRDI and PWI MRI, have proven effective in delineating tumor tissue properties, offering valuable insights into glioma behavior. Similarly, liquid biopsy has emerged as a potent tool for identifying tumor-derived markers in biofluids, offering a non-invasive glimpse into tumor evolution. Despite their promise, these methodologies grapple with significant challenges. Their sensitivity remains inconsistent, complicating the accurate differentiation between TP and PSP. Furthermore, the absence of standardized protocols across platforms impedes the reliability of comparisons, while inherent biological variability adds complexity to data interpretation. CONCLUSION: Their potential applications have been highlighted, but gaps remain before routine clinical use. Further research is needed to develop and validate these promising methods for distinguishing TP from PsP in gliomas.

19.
J Transl Med ; 22(1): 359, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38632656

RESUMEN

BACKGROUND: Myelodysplastic neoplasms (MDS) are myeloid neoplasms characterized by disordered differentiation of hematopoietic stem cells and a predisposition to acute myeloid leukemia (AML). The underline pathogenesis remains unclear. METHODS: In this study, the trajectory of differentiation and mechanisms of leukemic transformation were explored through bioinformatics analysis of single-cell RNA-Seq data from hematopoietic stem and progenitor cells (HSPCs) in MDS patients. RESULTS: Among the HSPC clusters, the proportion of common myeloid progenitor (CMP) was the main cell cluster in the patients with excess blasts (EB)/ secondary AML. Cell cycle analysis indicated the CMP of MDS patients were in an active proliferative state. The genes involved in the cell proliferation, such as MAML3 and PLCB1, were up-regulated in MDS CMP. Further validation analysis indicated that the expression levels of MAML3 and PLCB1 in patients with MDS-EB were significantly higher than those without EB. Patients with high expression of PLCB1 had a higher risk of transformation to AML. PLCB1 inhibitor can suppress proliferation, induce cell cycle arrest, and activate apoptosis of leukemic cells in vitro. CONCLUSION: This study revealed the transcriptomic change of HSPCs in MDS patients along the pseudotime and indicated that PLCB1 plays a key role in the transformation of MDS into leukemia.


Asunto(s)
Leucemia Mieloide Aguda , Síndromes Mielodisplásicos , Humanos , Transcriptoma , Células Madre Hematopoyéticas/metabolismo , Síndromes Mielodisplásicos/patología , Leucemia Mieloide Aguda/genética , Perfilación de la Expresión Génica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA