Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
1.
J Am Chem Soc ; 146(29): 20530-20538, 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-38991189

RESUMEN

The electrochemical reduction reaction of carbon dioxide (CO2RR) into valuable products offers notable economic benefits and contributes to environmental sustainability. However, precisely controlling the reaction pathways and selectively converting key intermediates pose considerable challenges. In this study, our theoretical calculations reveal that the active sites with different states of copper atoms (1-3-5-7-9) play a pivotal role in the adsorption behavior of the *CHO critical intermediate. This behavior dictates the subsequent hydrogenation and coupling steps, ultimately influencing the formation of the desired products. Consequently, we designed two model electrocatalysts comprising Cu single atoms and particles supported on CeO2. This design enables controlled *CHO intermediate transformation through either hydrogenation with *H or coupling with *CO, leading to a highly selective CO2RR. Notably, our selective control strategy tunes the Faradaic efficiency from 61.1% for ethylene (C2H4) to 61.2% for methane (CH4). Additionally, the catalyst demonstrated a high current density and remarkable stability, exceeding 500 h of operation. This work not only provides efficient catalysts for selective CO2RR but also offers valuable insights into tailoring surface chemistry and designing catalysts for precise control over catalytic processes to achieve targeted product generation in CO2RR technology.

2.
J Am Chem Soc ; 146(32): 22650-22660, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39080509

RESUMEN

Iron-nitrogen-carbon (Fe-N-C) catalysts, although the most active platinum-free option for the cathodic oxygen reduction reaction (ORR), suffer from poor durability due to the Fe leaching and consequent Fenton effect, limiting their practical application in low-temperature fuel cells. This work demonstrates an integrated catalyst of a platinum-iron (PtFe) alloy planted in an Fe-N-C matrix (PtFe/Fe-N-C) to address this challenge. This novel catalyst exhibits both high-efficiency activity and stability, as evidenced by its impressive half-wave potential (E1/2) of 0.93 V versus reversible hydrogen electrode (vs RHE) and minimal 7 mV decay even after 50,000 potential cycles. Remarkably, it exhibits a very low hydrogen peroxide (H2O2) yield (0.07%) at 0.6 V and maintains this performance with negligible change after 10,000 potential cycles. Fuel cells assembled with this cathode PtFe/Fe-N-C catalyst show exceptional durability, with only 8 mV voltage loss at 0.8 A cm-2 after 30,000 cycles and ignorable current degradation at a voltage of 0.6 V over 85 h. Comprehensive in situ experiments and theoretical calculations reveal that oxygen species spillover from Fe-N-C to PtFe alloy not only inhibits H2O2 production but also eliminates harmful oxygenated radicals. This work paves the way for the design of highly efficient and stable ORR catalysts and has significant implications for the development of next-generation fuel cells.

3.
Nat Commun ; 15(1): 3799, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38714769

RESUMEN

Intriguing "slidetronics" has been reported in van der Waals (vdW) layered non-centrosymmetric materials and newly-emerging artificially-tuned twisted moiré superlattices, but correlative experiments that spatially track the interlayer sliding dynamics at atomic-level remain elusive. Here, we address the decisive challenge to in-situ trace the atomic-level interlayer sliding and the induced polarization reversal in vdW-layered yttrium-doped γ-InSe, step by step and atom by atom. We directly observe the real-time interlayer sliding by a 1/3-unit cell along the armchair direction, corresponding to vertical polarization reversal. The sliding driven only by low energetic electron-beam illumination suggests rather low switching barriers. Additionally, we propose a new sliding mechanism that supports the observed reversal pathway, i.e., two bilayer units slide towards each other simultaneously. Our insights into the polarization reversal via the atomic-scale interlayer sliding provide a momentous initial progress for the ongoing and future research on sliding ferroelectrics towards non-volatile storages or ferroelectric field-effect transistors.

5.
Phys Chem Chem Phys ; 26(4): 3335-3341, 2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38197880

RESUMEN

Ferroic compounds Fe2O(SeO3)2 (FSO) and Fe2(SeO3)3·3H2O (FSOH) prepared by the hydrothermal method are characterized and their optical properties are investigated by combining with first-principles calculations. The results show that (i) FSO is antiferromagnetic below ∼110 K and becomes ferromagnetic at elevated temperatures, while FSOH is antiferromagnetic at low temperatures probably due to a change in the spin state from Fe3+ (S = 5/2) to Fe2+ (S = 2); (ii) the optical bandgap is determined to be ∼2.83 eV for FSO and ∼2.15 eV for FSOH, consistent with the theoretical calculation; and (iii) the angle-resolved polarized Raman spectroscopy results of both crystals demonstrate the strong anisotropic light absorption and birefringence effects, and the unconventional symmetricity of some Raman modes is observed, which can be interpreted from the variation of Raman scattering elements. This work can provide not only an understanding of the structure and physical properties of iron selenites, but also a strategy for exploring the anomalous Raman behaviors in anisotropic crystals, facilitating the design and engineering of novel functional devices with low-symmetry ferroic materials.

6.
Small ; 20(24): e2307347, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38191777

RESUMEN

Cu2ZnSn(S,Se)4 (CZTSSe) has attracted great interest in thin-film solar cells due to its excellent photoelectric performance in past decades, and recently is gradually expanding to the field of photodetectors. Here, the CZTSSe self-powered photodetector is prepared by using traditional photovoltaic device structure. Under zero bias, it exhibits the excellent performance with a maximum responsivity of 0.77 A W-1, a high detectivity of 8.78 × 1012 Jones, and a wide linear dynamic range of 103 dB. Very fast response speed with the rise/decay times of 0.576/1.792 µs, and ultra-high switching ratio of 3.54 × 105 are obtained. Comprehensive electrical and microstructure characterizations confirm that element diffusion among ITO, CdS, and CZTSSe layers not only optimizes band alignment of CdS/CZTSSe, but also suppresses the formation of interface defects. Such a suppression of interface defects and spike-like band alignment significantly inhibit carrier nonradiative recombination at interface and promote carrier transport capability. The low trap density in CZTSSe and low back contact barrier of CZTSSe/Mo could be responsible for the very fast response time of photodetector. This work definitely provides guidance for designing a high performance self-powered photodetector with high photoresponse, high switching ratio, fast response speed, and broad linear dynamic range.

7.
Langmuir ; 39(42): 14904-14911, 2023 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-37843191

RESUMEN

In recent years, many studies on photocatalysis focused on improving efficiency. However, the cycle performance is also an important index for industrialization. Here, an Ag2O/TiO2 heterostructure photocatalyst is prepared for continuous photodegradation of methylene blue (MB) under visible light, and the samples after the first and fifth round reactions are recycled to study the microstructure evolution of the photocatalyst. The results show that the performance is obviously improved in the second round and remains stable in the following reaction round. Due to the charge transfer, Ag2O/TiO2 gradually changes to Ag2O@Ag-TiO2-x during the photocatalytic reaction. The resulting localized surface plasmon resonance effect and the change of the interface structure greatly increase the number of carriers and prolong the lifetime of carriers. Such variations of microstructures and photoelectric properties of the samples due to the charge transfer and redox reaction on the surface of the photocatalyst dominate the cycle performance.

8.
Nanoscale ; 15(32): 13297-13303, 2023 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-37539838

RESUMEN

Low-symmetric GeTe semiconductors have attracted wide-ranging attention due to their excellent optical and thermal properties, but only a few research studies are available on their in-plane optical anisotropic nature that is crucial for their applications in optoelectronic and thermoelectric devices. Here, we investigate the optical interactions of anisotropy in GeTe using polarization-resolved Raman spectroscopy and first-principles calculations. After determining both armchair and zigzag directions in GeTe crystals by transmission electron microscopy, we found that the Raman intensity of the two main vibrational modes had a strong in-plane anisotropic nature; the one at ∼88.1 cm-1 can be used to determine the crystal orientation, and the other at ∼124.6 cm-1 can reveal a series of temperature-dependent phase transitions. These results provide a general approach for the investigation of the anisotropy of light-matter interactions in low-symmetric layered materials, benefiting the design and application of optoelectronic, anisotropic thermoelectric, and phase-transition memory devices based on bulk GeTe.

9.
J Am Chem Soc ; 145(31): 17253-17264, 2023 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-37498730

RESUMEN

The electrochemical CO2 reduction reaction (CO2RR) using renewable electricity is one of the most promising strategies for reaching the goal of carbon neutrality. Multicarbonous (C2+) products have broad applications, and ethanol is a valuable chemical and fuel. Many Cu-based catalysts have been reported to be efficient for the electrocatalytic CO2RR to C2+ products, but they generally offer limited selectivity and current density toward ethanol. Herein, we proposed a silica-mediated hydrogen-bonded organic framework (HOF)-templated approach to preparing ultrahigh-density Cu single-atom catalysts (SACs) on thin-walled N-doped carbon nanotubes (TWN). The content of Cu in the catalysts prepared by this method could be up to 13.35 wt %. It was found that the catalysts showed outstanding performance for the electrochemical CO2RR to ethanol, and the Faradaic efficiency (FE) of ethanol increased with the increase in Cu-N3 site density. The FE of ethanol over the catalysts with 13.35 wt % Cu could reach ∼81.9% with a partial current density of 35.6 mA cm-2 using an H-type cell, which is the best result for electrochemical CO2RR to ethanol to date. In addition, the catalyst could be stably used for more than 25 h. Experimental and density functional theory (DFT) studies revealed that the adjacent Cu-N3 active sites (one Cu atom coordinates with three N) were the active sites for the reaction, and their high density was crucial for the high FE of ethanol because the adjacent Cu-N3 sites with a short distance could promote the C-C coupling synergistically.

10.
Angew Chem Int Ed Engl ; 62(29): e202303875, 2023 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-37085953

RESUMEN

Transition-metal phosphides (TMPs) as typical conversion-type anode materials demonstrate extraordinary theoretical charge storage capacity for sodium ion batteries, but the unavoidable volume expansion and irreversible capacity loss upon cycling represent their long-standing limitations. Herein we report a stress self-adaptive structure with ultrafine FeP nanodots embedded in dense carbon microplates skeleton (FeP@CMS) via the spatial confinement of carbon quantum dots (CQDs). Such an architecture delivers a record high specific capacity (778 mAh g-1 at 0.05 A g-1 ) and ultra-long cycle stability (87.6 % capacity retention after 10 000 cycles at 20 A g-1 ), which outperform the state-of-the-art literature. We decode the fundamental reasons for this unprecedented performance, that such an architecture allows the spontaneous stress transfer from FeP nanodots to the surrounding carbon matrix, thus overcomes the intrinsic chemo-mechanical degradation of metal phosphides.

11.
Phys Chem Chem Phys ; 25(6): 4617-4623, 2023 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-36723191

RESUMEN

Quasi-one-dimensional (Q1D) semiconductor antimony selenide (Sb2Se3) shows great potential in the photovoltaic field, but the photoelectric conversion efficiency (PCE) of Sb2Se3-based solar cells has shown no obvious breakthrough during the past several years, of which the intrinsic reasons are pending experimentally. Here, we prepare high-quality Q1D Sb2Se3 thin films via the vapor transport deposition technique. By investigating the bandedge electronic level structure and carrier relaxation/recombination dynamics, we find that (i) the optimized Se-rich growth conditions can highly improve the crystal quality of the Q1D Sb2Se3 thin films, the carrier lifetime of which is substantially increased up to ∼8.3 µs; (ii) the Se-rich growth conditions have advantages to annihilate the deep selenium vacancies VSei (i = 1 and 3 for non-equivalent Se atomic sites) but is not effective for the deep donor VSe2, which locates at ∼0.3 eV (300 K) below the conduction band and intrinsically limits the PCE value of devices below ∼7.63%. This work suggests that further optimizing the Se-rich conditions to technically eliminate this kind of deep defect is still essential for preparing high-performance Sb2Se3 film solar cells.

12.
J Colloid Interface Sci ; 638: 834-841, 2023 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-36791481

RESUMEN

Low-cost and eco-friendly CuI hybrid compounds with various structures have recently attracted increasing attention due to their excellent optical properties and promising phosphor applications. However, the poor solubility and solution processability of bulk powders with agglomerated particle limited their practical applications greatly. In this work, we reported the self-assembly formation of CuI hybrid micron phosphors via the aqueous PVP micelle-assisted assembly route. Seven CuI hybrid micron phosphors with the emission from blue 450 nm to red 636 nm have been successfully synthesized. Among them, CuI-pyridine hybrid micron phosphors can be obtained via the reaction of CuI with various pyridines. PVP limits the size growth of the phosphors efficiently and it also plays an important role in controlling the distinct crystal phase formation. Whereas, micron phosphors based on bidentate ligands including 2-propylpyrazine, 5-bromopyrimidine or 4,4'-bipyridine need to be prepared via ligand exchange reaction. The micron phosphors present excellent stability in water and can be dispersed in the aqueous solution of PVP or PVA to form homogenous luminescent composites. The luminescent composites based on PVP are easy to use for fabricating anti-counterfeiting patterns via brush-painting or screen-printing. On the other hand, PVA composites can be applied for preparing free standing monochromatic or multichromatic emitting films as color convertor for display backlight. The PVA composites also exhibit the promising phosphor application for light-emitting diode (LED). Especially, the white LED can be directly realized via optimizing the mixing ratio of blue and orange phosphors.

13.
Phys Chem Chem Phys ; 25(5): 3745-3751, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36644899

RESUMEN

Anisotropy in a crystal structure plays a striking role in determining the optical, electrical and thermal properties of the condensed matter. Here, we investigated in-plane vibrational anisotropy in a two-dimensional (2D) van der Waals (vdW)-layered GeAs narrow-gap semiconductor by combining microstructural characterization and polarization Raman spectroscopy. Interestingly, not only the intensities but also the Raman shifts in all modes evolved periodically with different symmetries as the polarization angle changed continuously, which could be well-analyzed using the Raman tensors and further interpreted from the phonon dispersion relations. More importantly, the temperature-dependent Raman intensities of the Raman modes in the range from 83 K to 823 K gave a thermal-related uniform constant, based on which key parameters, including the thermal expansion coefficient, Grüneisen constant and quasi-particle lifetime, could be directly derived, which were in line with the calculated predictions. This investigation provides a comprehensive understanding of structure-dependent optical anisotropy in 2D vdW-layered GeAs and suggests a new idea for exploring the thermal properties of related materials using temperature-dependent Raman spectroscopy.

14.
Nat Commun ; 14(1): 36, 2023 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-36596789

RESUMEN

Two-dimensional (2D) van-der-Waals (vdW) layered ferroelectric semiconductors are highly desired for in-memory computing and ferroelectric photovoltaics or detectors. Beneficial from the weak interlayer vdW-force, controlling the structure by interlayer twist/translation or doping is an effective strategy to manipulate the fundamental properties of 2D-vdW semiconductors, which has contributed to the newly-emerging sliding ferroelectricity. Here, we report unconventional room-temperature ferroelectricity, both out-of-plane and in-plane, in vdW-layered γ-InSe semiconductor triggered by yttrium-doping (InSe:Y). We determine an effective piezoelectric constant of ∼7.5 pm/V for InSe:Y flakes with thickness of ∼50 nm, about one order of magnitude larger than earlier reports. We directly visualize the enhanced sliding switchable polarization originating from the fantastic microstructure modifications including the stacking-faults elimination and a subtle rhombohedral distortion due to the intralayer compression and continuous interlayer pre-sliding. Our investigations provide new freedom degrees of structure manipulation for intrinsic properties in 2D-vdW-layered semiconductors to expand ferroelectric candidates for next-generation nanoelectronics.

15.
ACS Appl Mater Interfaces ; 15(5): 7157-7164, 2023 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-36705635

RESUMEN

Antiferroelectric thin-film capacitors with ultralow remanent polarization and fast discharge speed have attracted extensive attention for energy storage applications. A multilayer heterostructure is considered to be an efficient approach to enhance the breakdown strength and improve the functionality. Here, we report a high-performance multilayer heterostructure (PbZrO3/PbTiO3)n with a maximum recoverable energy storage density of 36.4 J/cm3 due to its high electric breakdown strength (2.9 MV/cm) through the heterostructure strategy. The positive effect of interfacial blockage and the negative effect of local strain defects competitively affect the breakdown strength, showing an inflection point at n = 3. The atomic-scale characterizations reveal the underlying microstructure mechanism of the interplay between the heterointerface dislocations and the decreased energy storage performance. This work offers the potential of well-designed multilayers with high energy storage performance through heterostructure engineering.

16.
Small ; 19(2): e2204864, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36394082

RESUMEN

Electrochemical activation strategy is very effective to improve the intrinsic catalytic activity of metal phosphate toward the sluggish oxygen evolution reaction (OER) for water electrolysis. However, it is still challenging to operando trace the activated reconstruction and corresponding electrocatalytic dynamic mechanisms. Herein, a constant voltage activation strategy is adopted to in situ activate Ni2 P4 O12 , in which the break of NiONi bond and dissolution of PO4 3- groups could optimize the lattice oxygen, thus reconstructing an irreversible amorphous Ni(OH)2 layer with a thickness of 1.5-3.5 nm on the surface of Ni2 P4 O12 . The heterostructure electrocatalyst can afford an excellent OER activity in alkaline media with an overpotential of 216.5 mV at 27.0 mA cm-2 . Operando X-ray absorption fine structure spectroscopy analysis and density functional theory simulations indicate that the heterostructure follows a nonconcerted proton-electron transfer mechanism for OER. This activation strategy demonstrates universality and can be used to the surface reconstruction of other metal phosphates.

17.
ACS Appl Mater Interfaces ; 14(50): 55528-55537, 2022 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-36510356

RESUMEN

Elemental doping and surface modification are commonly used strategies for improving the electrochemical performance of LiMn2O4, such as the rated capacity and cycling stability. In this study, in situ formed core-shell LiZnxMn2-xO4@ZnMn2O4 cathodes are prepared by tuning the Zn-doping content. Through comprehensive microstructural analyses by the spherical aberration-corrected scanning transmission microscopy (Cs-STEM) technique, we shed light on the correlation between the microstructural configuration and the electrochemical performance of Zn-doped LiMn2O4. We demonstrate that part of Zn2+ ions dope into the spinel to form LiZnxMn2-xO4 in bulk and other Zn2+ ions occupy the 8a sites of the spinel to form the ZnMn2O4 shell on the outermost surface. This in situ formed core-shell LiZnxMn2-xO4@ZnMn2O4 contributes to better structural stabilization, presenting a superior capacity retention ratio of 95.8% after 700 cycles at 5 C at 25 °C for the optimized sample (LiZn0.02Mn1.98O4), with an initial value of 80 mAh g-1. Our investigations not only provide an effective way toward high-performance LIBs but also shed light on the fundamental interplay between the microstructural configuration and the electrochemical performance of Zn-doped spinel LiMn2O4.

18.
Nat Commun ; 13(1): 6703, 2022 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-36344552

RESUMEN

Efficient and robust platinum-carbon electrocatalysts are of great significance for the long-term service of high-performance fuel cells. Here, we report a Pt alloy integrated in a cobalt-nitrogen-nanocarbon matrix by a multiscale design principle for efficient oxygen reduction reaction. This Pt integrated catalyst demonstrates an increased mass activity, 11.7 times higher than that of commercial Pt catalyst, and retains a stability of 98.7% after 30,000 potential cycles. Additionally, this integrated catalyst delivers a current density of 1.50 A cm-2 at 0.6 V in the hydrogen-air fuel cell and achieves a power density of 980 mW cm-2. Comprehensive investigations demonstrate that the synergistic contribution of components and structure in the platinum-carbon integrated catalyst is responsible for the high-efficiency ORR in fuel cells.

20.
Am J Transl Res ; 14(6): 4380-4387, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35836898

RESUMEN

OBJECTIVE: To explore the application effect of Quality Management Circle (QCC) in nursing of orthopaedic trauma surgery. METHODS: The clinical data of 134 cases undergoing orthopaedic trauma surgery were assigned into 2 groups according to different nursing methods. Thereinto, 67 cases with traditional nursing were considered as the control group (CG), and the left with traditional nursing and QCC activities were assigned as the study group (SG). The pain (VAS) score and psychological fluctuation index were observed and compared at various time points after operation. The recorded indexes included anxiety (SAS) and depression (SDS) scores before and after intervention, limb joint activity, health knowledge awareness rate, satisfaction rate, quantitative score of quality of life and nosocomial infection rate. RESULTS: After intervention, the VAS scores in the SG were lower than those in the CG 2 weeks after intervention (all P<0.05). The quantitative scores of SDS and SAS in the SG after intervention were lower than those in the CG (all P<0.05). After that, the range of motion of lower limb joints in the SG was higher than that in the CG (all P<0.05). The awareness rate of health knowledge in the SG was higher than that in the CG (all P<0.05). The satisfaction rate of the SG was higher than that of the CG (P<0.05). The score level of each index of quality of life in the SG was higher than that in the CG (all P<0.05). There was no marked difference in nosocomial infection rate (P>0.05). CONCLUSION: The application of QCC on patients undergoing orthopaedic trauma surgery can not only reduce patients' pain, negative emotions, but also improve limb joint activity, health knowledge awareness rate, satisfaction rate and quality of life.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA