Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Biochem Pharmacol ; 184: 114353, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33278350

RESUMEN

BACKGROUND: Rho-Associated kinases ROCK1 and ROCK2 have been extensively investigated in the pathogenesis of cardiovascular disease. However, their roles are not fully understood in carcinogenesis. In this study, we investigated whether ROCK1 or ROCK2 is required for the survival and growth of hepatocellular carcinoma (HCC) cells and underlying mechanism. METHODS: ROCKs expression was determined in human HCC tissue and cell lines using qRT-PCR, western blotting, and immunohistochemistry (IHC). Cell growth and proliferation were assayed using cell counting kit-8 (CCK-8) and EdU incorporation assay. Cell cycle and apoptosis analysis were performed using flow cytometry. HCC cell division or mitosis was observed using a confocal microscope and a time relapse fluorescence microscope. Inhibitory role of targeting ROCK1/2 on HCC was assayed in both xenograft and primary HCC mouse models. RESULTS: Both ROCK1 and ROCK2 are over-expressed in human HCC tissues and cell lines. Knockdown of ROCK1 or ROCK2 inhibited HCC cell growth. Pharmacological inactivation of ROCK1/2 with Fasudil further blocked the growth and survival of HCC both in vitro and in vivo. Mechanically, Fasudil induces cell cycle arrest in HCC cells, but not apoptosis. Instead, Fasudil treatment led to mitotic catastrophe in HCC cells, characterized with the multipolar and asymmetric mitosis, and disassociated stress fibers. Knockdown of cofilin restored the cell morphology and division, and reduced the mitotic catastrophe induced by Fasudil. CONCLUSIONS: Both ROCK1 and ROCK2 are required for HCC cell division and growth. Targeting ROCK1 or ROCK2 rather than both can serve as a potential approach for HCC treatment and may reduce the side effects.


Asunto(s)
Carcinoma Hepatocelular/tratamiento farmacológico , Neoplasias Hepáticas/tratamiento farmacológico , Quinasas Asociadas a rho/metabolismo , 1-(5-Isoquinolinesulfonil)-2-Metilpiperazina/análogos & derivados , Animales , Apoptosis/genética , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patología , División Celular/efectos de los fármacos , Línea Celular Tumoral , Replicación del ADN , Femenino , Regulación Neoplásica de la Expresión Génica , Células Hep G2 , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , Ratones Endogámicos BALB C , Mitosis/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto , Quinasas Asociadas a rho/antagonistas & inhibidores , Quinasas Asociadas a rho/genética
2.
Waste Manag ; 118: 585-590, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33010689

RESUMEN

The present work describes the feasibility of coffee residue extracts as cryoprotective agents in the storage stability of freeze-dried lactic acid bacteria. Coffee residue extracts were extracted from coffee residue, produced after coffee extraction for coffee powder and instant coffee preparation, using an autoclave. Leuconostoc mesenteroides WiKim32 was selected to evaluate the ability of coffee residue extracts to protect bacteria during freeze-dried storage. The storage stability of freeze-dried Leu. mesenteroides WiKim32 with coffee residue extracts was comparable to those with commercial cryoprotective agents. Coffee residue extracts contributed to storage stability immediately after freeze-drying (61.2%) and subsequent storage (48.7%). Our data indicate that the protective effect of the coffee residue extracts is associated with ions, carbohydrates, and phenolic compounds. Coffee residue extracts are feasible materials, which can reduce the storage and distribution costs compared to commercial agents currently available.


Asunto(s)
Café , Lactobacillales , Liofilización , Esperanza de Vida , Polvos
3.
J Am Chem Soc ; 141(36): 14443-14450, 2019 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-31431009

RESUMEN

The corrole unit from the porphyrinoid family represents one of the most important ligands in the field of coordination chemistry, which creates a unique environment allowing for the observation of unusual electronic states of bound metal cations and has shown great promise in various applications. Nevertheless, studies that directly and systematically introduce these motifs in porous crystalline materials for targeting further functionalizations are still lacking. Herein, we report for the first time the construction of two robust corrole-based metal-organic frameworks (MOFs), M6(µ3-O)4(µ3-OH)4(OH)3(H2O)3(H3TCPC)3 (M = Zr for Corrole-MOF-1 and M = Hf for Corrole-MOF-2, H3TCPC = 5,10,15-tris(p-carboxylphenyl)corrole), which are assembled by a custom-designed C2ν-symmetric corrolic tricarboxylate ligand and the unprecedented D3d-symmetric 9-connected Zr6/Hf6 clusters. The resultant frameworks feature a rare (3,9)-connected gfy net and exhibit high chemical stability in aqueous solutions within a wide range of pH values. Furthermore, we successfully prepared the cationic Corrole-MOF-1(Fe) from the iron corrole ligand, which can serve as an efficient heterogeneous catalyst for [4 + 2] hetero-Diels-Alder reactions between unactivated aldehydes and a simple diene, outperforming both the homogeneous counterpart and the porphyrinic MOF counterpart.

4.
Mol Imaging Biol ; 21(5): 907-916, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-30617730

RESUMEN

PURPOSE: Previous studies has demonstrated the utility of human epidermal growth factor receptor type 2 (HER2) as an attractive target for cancer molecular imaging and therapy. An affibody protein with strong binding affinity for HER2, ZHER2:342, has been reported. Various methods of chelator conjugation for radiolabeling HER2 affibody molecules have been described in the literature including N-terminal conjugation, C-terminal conjugation, and other methods. Cu-64 has recently been extensively evaluated due to its half-life, decay properties, and availability. Our goal was to optimize the radiolabeling method of this affibody molecule with Cu-64, and translate a positron emission tomography (PET) probe with the best in vivo performance to clinical PET imaging of HER2-positive cancers. PROCEDURES: In our study, three anti-HER2 affibody proteins-based PET probes were prepared, and their in vivo performance was evaluated in mice bearing HER2-positive subcutaneous SKOV3 tumors. The affibody analogues, Ac-Cys-ZHER2:342, Ac-ZHER2:342(Cys39), and Ac-ZHER2:342-Cys, were synthesized using the solid phase peptide synthesis method. The purified small proteins were site-specifically conjugated with the maleimide-functionalized chelator, 1,4,7,10-tetraazacyclododecane-1,4,7-tris- aceticacid-10-maleimidethylacetamide (maleimido-mono-amide-DOTA). The resulting DOTA-affibody conjugates were then radiolabeled with Cu-64. Cell uptake assay of the resulting PET probes, [64Cu]DOTA-Cys-ZHER2:342, [64Cu]DOTA-ZHER2:342(Cys39), and [64Cu]DOTA-ZHER2:342-Cys, was performed in HER2-positive human ovarian SKOV3 carcinoma cells at 4 and 37 °C. The binding affinities of the radiolabeled peptides were tested by cell saturation assay using SKOV3 cells. PET imaging, biodistribution, and metabolic stability studies were performed in mice bearing SKOV3 tumors. RESULTS: Cell uptake assays showed high and specific uptake by incubation of Cu-64-labeled affibodies with SKOV3 cells. The affinities (KD) of the PET radio probes as tested by cell saturation analysis were in the low nanomolar range with the ranking of [64Cu]DOTA-Cys-ZHER2:342 (25.2 ± 9.2 nM) ≈ [64Cu]DOTA-ZHER2:342-Cys (32.6 ± 14.7 nM) > [64Cu]DOTA-ZHER2:342(Cys39) (77.6 ± 22.2 nM). In vitro stability and in vivo metabolite analysis study revealed that all three probes were stable enough for in vivo imaging applications, while [64Cu]DOTA-Cys-ZHER2:342 showed the highest stability. In vivo small-animal PET further demonstrated fast tumor targeting, good tumor accumulation, and good tumor to normal tissue contrast of all three probes. For [64Cu]DOTA-Cys-ZHER2:342, [64Cu]DOTA-ZHER2:342(Cys39), and [64Cu]DOTA-ZHER2:342-Cys, tumor uptake at 24 h are 4.0 ± 1.0 % ID/g, 4.0 ± 0.8 %ID/g, and 4.3 ± 0.7 %ID/g, respectively (mean ± SD, n = 4). Co-injection of the probes with non-labeled anti-HER2 affibody proteins confirmed in vivo specificities of the compounds by tumor uptake reduction. CONCLUSIONS: The three Cu-64-labeled ZHER2:342 analogues all display excellent HER2 targeting ability and tumor PET imaging quality. Although varied in the position of the radiometal labeling of these three Cu-64-labeled ZHER2:342 analogues, there is no significant difference in tumor and normal tissue uptakes among the three probes. [64Cu]DOTA-Cys-ZHER2:342 stands out as the most superior PET probe because of its highest affinities and in vivo stability.


Asunto(s)
Radioisótopos de Cobre/química , Tomografía de Emisión de Positrones , Proteínas Recombinantes de Fusión/metabolismo , Animales , Línea Celular Tumoral , Femenino , Humanos , Metabolómica , Ratones Desnudos , Proteínas Recombinantes de Fusión/química , Distribución Tisular
5.
Int J Mol Sci ; 15(11): 20004-21, 2014 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-25372945

RESUMEN

Bmi1 is a member of the polycomb group family of proteins, and it drives the carcinogenesis of various cancers and governs the self-renewal of multiple types of stem cells. Our previous studies have revealed that Bmi1 acts as an oncogene in hepatic carcinogenesis in an INK4a/ARF locus independent manner. However, whether Bmi1 can be used as a potential target for hepatocellular carcinoma treatment has not been fully confirmed yet. Here, we show that perturbation of Bmi1 expression by using short hairpin RNA can inhibit the tumorigenicity and tumor growth of hepatocellular carcinoma cells both in vitro and in vivo. Importantly, Bmi1 knockdown can block the tumor growth, both in the initiating stages and the fast growing stages. Cellular biology analysis revealed that Bmi1 knockdown induces cell cycle arrest and apoptosis. Our findings verify Bmi1 as a qualified treatment target for hepatocellular carcinoma (HCC) and support Bmi1 targeting treatment with chemotherapeutic agents.


Asunto(s)
Carcinoma Hepatocelular/patología , Neoplasias Hepáticas/patología , Complejo Represivo Polycomb 1/antagonistas & inhibidores , Proteínas Proto-Oncogénicas/antagonistas & inhibidores , ARN Interferente Pequeño/metabolismo , Animales , Antibióticos Antineoplásicos/farmacología , Antibióticos Antineoplásicos/uso terapéutico , Apoptosis/efectos de los fármacos , Carcinoma Hepatocelular/mortalidad , Carcinoma Hepatocelular/terapia , Puntos de Control del Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Doxorrubicina/farmacología , Doxorrubicina/uso terapéutico , Femenino , Humanos , Neoplasias Hepáticas/mortalidad , Neoplasias Hepáticas/terapia , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Complejo Represivo Polycomb 1/genética , Complejo Represivo Polycomb 1/metabolismo , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo , Interferencia de ARN , ARN Mensajero/metabolismo , ARN Interferente Pequeño/uso terapéutico , Trasplante Heterólogo
6.
Int J Nanomedicine ; 9: 4581-95, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25302024

RESUMEN

Instability of targeting ligand is a roadblock towards successful development of folate targeted liposomes. Folate ligands have been linked to polyethylene glycol (PEG) and cholesterol by an amide bond to form folate-CONH-PEG-CONH-Cholesterol (F-CONH-PEG-CONH-Chol), which is subject to hydrolysis. To increase the stability of folate ligands and promote the long circulation and targeting effects, we synthesized a chemically stable lipophilic folate derivative, folate-CONH-PEG-NH-Cholesterol (F-CONH-PEG-NH-Chol), where the amide bond was replaced by a C-N bond, to deliver liposomal doxorubicin (Dox). Its physical stability, cellular uptake, cellular toxicity, pharmacokinetics, distribution, anti-tumor efficacy, and cardiac toxicity were investigated. Our results indicate that F-CONH-PEG-NH-Chol conjugated liposomes are taken up selectively by folate receptor-positive HeLa and KB cells. Compared with F-CONH-PEG-CONH-Chol with two carbonate linkages, F-CONH-PEG-NH-Chol better retained its drug entrapment efficiency and folate receptor-targeting activity during prolonged circulation. F-CONH-PEG-NH-Chol thus represents a physically stable and effective ligand for delivering folate receptor-targeted liposomes, with prolonged circulation time and efficient tissue distribution, as well as higher efficacy and less cardiac toxicity. Collectively, these results suggest that this novel conjugate can serve as a promising derivative for the delivery of anti-tumor therapeutic agents.


Asunto(s)
Antineoplásicos/farmacocinética , Doxorrubicina/farmacocinética , Sistemas de Liberación de Medicamentos/métodos , Ácido Fólico/farmacocinética , Liposomas/farmacocinética , Animales , Antineoplásicos/sangre , Antineoplásicos/química , Antineoplásicos/farmacología , Supervivencia Celular/efectos de los fármacos , Colesterol/química , Doxorrubicina/sangre , Doxorrubicina/química , Doxorrubicina/farmacología , Estabilidad de Medicamentos , Ácido Fólico/química , Células HeLa , Humanos , Liposomas/química , Liposomas/toxicidad , Masculino , Ratones , Distribución Tisular
7.
Theranostics ; 4(11): 1096-111, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25285163

RESUMEN

Bmi1 gene overexpression is found in various human tumors and has been shown as a potential target for gene treatment. However, siRNA-based treatments targeting Bmi1 gene have been restricted to limited delivery, low bioavailability and hence relatively reduced efficacy. To overcome these barriers, we developed a folate receptor targeted co-delivery system folate-doxorubicin/Bmi1 siRNA liposome (FA-DOX/siRNA-L). The FA-DOX/siRNA-L was prepared through electrostatic interaction between folate doxorubicin liposome (FA-DOX-L) and Bmi1 siRNA. In vitro and in vivo studies showed that FA-DOX/siRNA-L inhibited tumor growth by combinatory role of Bmi1 siRNA and doxorubicin (DOX). Co-delivery of Bmi1 siRNA and DOX by FA-DOX/siRNA-L showed significantly higher efficacy than sole delivery of either DOX or Bmi1 siRNA. Real-time PCR and western blot analysis showed that FA-DOX/siRNA-L silenced the expression of Bmi1 gene. In addition, higher accumulation of the siRNA and DOX in tumor cells indicated that folate ligand displayed tumor targeting effect. These results suggest that Bmi1 is an effective therapeutic target for siRNA based cancer treatment that can be further improved by co-delivery of DOX through targeted liposomes.


Asunto(s)
Doxorrubicina/farmacocinética , Receptor 1 de Folato/agonistas , Ácido Fólico/metabolismo , Liposomas/metabolismo , Complejo Represivo Polycomb 1/antagonistas & inhibidores , ARN Interferente Pequeño/farmacocinética , Animales , Western Blotting , Línea Celular Tumoral , Portadores de Fármacos/administración & dosificación , Femenino , Perfilación de la Expresión Génica , Humanos , Ratones Endogámicos BALB C , Reacción en Cadena en Tiempo Real de la Polimerasa
8.
Bioconjug Chem ; 25(3): 579-92, 2014 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-24568284

RESUMEN

The copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC) click reaction was used to incorporate alkyne-functionalized dipicolylamine (DPA) ligands (1 and 3) for fac-[M(I)(CO)3](+) (M = Re/(99m)Tc) complexation into an α-melanocyte stimulating hormone (α-MSH) peptide analogue. A novel DPA ligand with carboxylate substitutions on the pyridyl rings (3) was designed to increase the hydrophilicity and to decrease in vivo hepatobiliary retention of fac-[(99m)Tc(I)(CO)3](+) complexes used in single photon emission computed tomography (SPECT) imaging studies with targeting biomolecules. The fac-[Re(I)(CO)3(3)] complex (4) was used for chemical characterization and X-ray crystal analysis prior to radiolabeling studies between 3 and fac-[(99m)Tc(I)(OH2)3(CO)3](+). The corresponding (99m)Tc complex (4a) was obtained in high radiochemical yields, was stable in vitro for 24 h during amino acid challenge and serum stability assays, and showed increased hydrophilicity by log P analysis compared to an analogous complex with nonfunctionalized pyridine rings (2a). An α-MSH peptide functionalized with an azide was labeled with fac-[M(I)(CO)3](+) using both click, then chelate (CuAAC reaction with 1 or 3 followed by metal complexation) and chelate, then click (metal complexation of 1 and 3 followed by CuAAC with the peptide) strategies to assess the effects of CuAAC conditions on fac-[M(I)(CO)3](+) complexation within a peptide framework. The peptides from the click, then chelate strategy had different HPLC tR's and in vitro stabilities compared to those from the chelate, then click strategy, suggesting nonspecific coordination of fac-[M(I)(CO)3](+) using this synthetic route. The fac-[M(I)(CO)3](+)-complexed peptides from the chelate, then click strategy showed >90% stability during in vitro challenge conditions for 6 h, demonstrated high affinity and specificity for the melanocortin 1 receptor (MC1R) in IC50 analyses, and led to moderately high uptake in B16F10 melanoma cells. Log P analysis of the (99m)Tc-labeled peptides confirmed the enhanced hydrophilicity of the peptide bearing the novel, carboxylate-functionalized DPA chelate (10a') compared to the peptide with the unmodified DPA chelate (9a'). In vivo biodistribution analysis of 9a' and 10a' showed moderate tumor uptake in a B16F10 melanoma xenograft mouse model with enhanced renal uptake and surprising intestinal uptake for 10a' compared to predominantly hepatic accumulation for 9a'. These results, coupled with the versatility of CuAAC, suggests this novel, hydrophilic chelate can be incorporated into numerous biomolecules containing azides for generating targeted fac-[M(I)(CO)3](+) complexes in future studies.


Asunto(s)
Aminas/química , Monóxido de Carbono/química , Complejos de Coordinación/farmacocinética , Melanoma Experimental/diagnóstico , Ácidos Picolínicos/química , Radiofármacos/farmacocinética , Renio/química , Tecnecio/química , alfa-MSH/química , Animales , Química Clic , Complejos de Coordinación/síntesis química , Complejos de Coordinación/química , Femenino , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Ligandos , Ratones , Ratones Endogámicos C57BL , Radiofármacos/síntesis química , Radiofármacos/química , Distribución Tisular , Tomografía Computarizada de Emisión de Fotón Único , Células Tumorales Cultivadas
9.
Biomed Res Int ; 2013: 759057, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23710458

RESUMEN

Hepatocellular carcinoma (HCC) is a highly aggressive and lethal cancer. It is typically asymptomatic at the early stage, with only 10%-20% of HCC patients being diagnosed early enough for appropriate surgical treatment. The delayed diagnosis of HCC is associated with limited treatment options and much lower survival rates. Therefore, the early and accurate detection of HCC is crucial to improve its currently dismal prognosis. The epidermal growth factor receptor (EGFR) has been reported to be involved in HCC tumorigenesis and to represent an attractive target for HCC imaging and therapy. In this study, an affibody molecule, Ac-Cys-ZEGFR:1907, targeting the extracellular domain of EGFR, was used for the first time to assess its potential to detect HCC xenografts. By evaluating radio- or fluorescent-labeled Ac-Cys-ZEGFR:1907 as a probe for positron emission tomography (PET) or optical imaging of HCC, subcutaneous EGFR-positive HCC xenografts were found to be successfully imaged by the PET probe. Thus, affibody-based PET imaging of EGFR provides a promising approach for detecting HCC in vivo.


Asunto(s)
Carcinoma Hepatocelular/patología , Receptores ErbB/química , Neoplasias Hepáticas/patología , Imagen Molecular , Animales , Carcinogénesis/genética , Carcinogénesis/patología , Carcinoma Hepatocelular/diagnóstico , Carcinoma Hepatocelular/genética , Línea Celular Tumoral , Detección Precoz del Cáncer , Receptores ErbB/genética , Humanos , Neoplasias Hepáticas/diagnóstico , Neoplasias Hepáticas/genética , Ratones , Estadificación de Neoplasias , Estructura Terciaria de Proteína , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/inmunología , Ensayos Antitumor por Modelo de Xenoinjerto
10.
Biomaterials ; 34(11): 2796-806, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23343632

RESUMEN

A highly monodispersed hetero-nanostructure with two different functional nanomaterials (gold (Au) and iron oxide (Fe(3)O(4,) IO)) within one structure was successfully developed as Affibody based trimodality nanoprobe (positron emission tomography, PET; optical imaging; and magnetic resonance imaging, MRI) for imaging of epidermal growth factor receptor (EGFR) positive tumors. Unlike other regular nanostructures with a single component, the Au-IO hetero-nanostructures (Au-IONPs) with unique chemical and physical properties have capability to combine several imaging modalities together to provide complementary information. The IO component within hetero-nanostructures serve as a T(2) reporter for MRI; and gold component serve as both optical and PET reporters. Moreover, such hetero-nanoprobes could provide a robust nano-platform for surface-specific modification with both targeting molecules (anti-EGFR Affibody protein) and PET imaging reporters (radiometal (64)Cu chelators) in highly efficient and reliable manner. In vitro and in vivo study showed that the resultant nanoprobe provided high specificity, sensitivity, and excellent tumor contrast for both PET and MRI imaging in the human EGFR-expressing cells and tumors. Our study data also highlighted the EGFR targeting efficiency of hetero-nanoparticles and the feasibility for their further theranostic applications.


Asunto(s)
Compuestos Férricos/química , Oro/química , Imagen por Resonancia Magnética/métodos , Nanopartículas del Metal/química , Neoplasias/diagnóstico , Tomografía de Emisión de Positrones/métodos , Animales , Materiales Biocompatibles/química , Línea Celular Tumoral , Receptores ErbB/metabolismo , Humanos , Ratones , Ratones Desnudos , Polietilenglicoles/química , Radiofármacos/química , Distribución Tisular
11.
Bioconjug Chem ; 23(11): 2300-12, 2012 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-23110503

RESUMEN

Engineering peptide-based targeting agents with residues for site-specific and stable complexation of radionuclides is a highly desirable strategy for producing diagnostic and therapeutic agents for cancer and other diseases. In this report, a model N-S-N(Py) ligand (3) and a cysteine-derived α-melanocyte stimulating hormone (α-MSH) peptide (6) were used as novel demonstrations of a widely applicable chelation strategy for incorporation of the [M(I)(CO)(3)](+) (M = Re, (99m)Tc) core into peptide-based molecules for radiopharmaceutical applications. The structural details of the core ligand-metal complexes as model systems were demonstrated by full chemical characterization of fac-[Re(I)(CO)(3)(N,S,N(Py)-3)](+) (4) and comparative high-performance liquid chromatography (HPLC) analysis between 4 and [(99m)Tc(I)(CO)(3)(N,S,N(Py)-3)](+) (4a). The α-MSH analogue bearing the N-S-N(Py) chelate on a modified cysteine residue (6) was generated and complexed with [M(I)(CO)(3)](+) to confirm the chelation strategy's utility when applied in a peptide-based targeting agent. Characterization of the Re(I)(CO)(3)-6 peptide conjugate (7) confirmed the efficient incorporation of the metal center, and the (99m)Tc(I)(CO)(3)-6 analogue (7a) was explored as a potential single photon emission computed tomography (SPECT) compound for imaging the melanocortin 1 receptor (MC1R) in melanoma. Peptide 7a showed excellent radiolabeling yields and in vitro stability during amino acid challenge and serum stability assays. In vitro B16F10 melanoma cell uptake of 7a reached a modest value of 2.3 ± 0.08% of applied activity at 2 h at 37 °C, while this uptake was significantly reduced by coincubation with a nonlabeled α-MSH analogue, NAPamide (3.2 µM) (P < 0.05). In vivo SPECT/X-ray computed tomography (SPECT/CT) imaging and biodistribution of 7a were evaluated in a B16F10 melanoma xenografted mouse model. SPECT/CT imaging clearly visualized the tumor at 1 h post injection (p.i.) with high tumor-to-background contrast. Blocking studies with coinjected NAPamide (10 mg per kg of mouse body weight) confirmed the in vivo specificity of 7a for MC1R-positive tumors. Biodistribution results with 7a yielded a moderate tumor uptake of 1.20 ± 0.09 percentage of the injected radioactive dose per gram of tissue (% ID/g) at 1 h p.i. Relatively high uptake of 7a was also seen in the kidneys and liver at 1 h p.i. (6.55 ± 0.36% ID/g and 4.44 ± 0.17% ID/g, respectively), although reduced kidney uptake was seen at 4 h p.i. (3.20 ± 0.48% ID/g). These results demonstrate the utility of the novel [M(I)(CO)(3)](+) chelation strategy when applied in a targeting peptide.


Asunto(s)
Quelantes/farmacocinética , Cisteína/química , Melanoma Experimental/diagnóstico , Compuestos Organometálicos/farmacocinética , Péptidos/farmacocinética , Radiofármacos/farmacocinética , alfa-MSH/farmacocinética , Animales , Quelantes/química , Ratones , Ratones Endogámicos C57BL , Modelos Moleculares , Estructura Molecular , Compuestos Organometálicos/química , Péptidos/química , Radiofármacos/química , Renio/química , Tecnecio/química , Distribución Tisular , Tomografía Computarizada de Emisión de Fotón Único , Tomografía Computarizada por Rayos X , Células Tumorales Cultivadas , alfa-MSH/química
12.
J Nucl Med ; 53(7): 1110-8, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22689926

RESUMEN

UNLABELLED: Epidermal growth factor receptor (EGFR) is often overexpressed in a variety of human cancers, and its expression is associated with poor prognosis for many cancer types. However, an accurate technique to noninvasively image EGFR expression in vivo is not available in the clinical setting. In this research, an Affibody analog, anti-EGFR Ac-Cys-Z(EGFR:1907), was successfully site-specifically (18)F-labeled for PET of EGFR expression. METHODS: The prosthetic group N-[2-(4-(18)F-fluorobenzamido) ethyl] maleimide ((18)F-FBEM) was conjugated to Ac-Cys-Z(EGFR:1907) under mild conditions (pH 7) to produce the probe (18)F-FBEM-Cys-Z(EGFR:1907). The binding affinity and specificity tests of (18)F-FBEM-Cys-Z(EGFR:1907) to EGFR were conducted using A431 cancer cells. Small-animal PET and biodistribution studies were conducted on various mice tumor xenograft models with EGFR overexpression (6 types) after injection of approximately 2.0 MBq of (18)F-FBEM-Cys-Z(EGFR:1907) with or without coinjection of unlabeled Ac-Cys-Z(EGFR:1907) for up to 3 h after injection. A correlation study between (18)F-FBEM-Cys-Z(EGFR:1907) small- animal PET quantification and ex vivo Western blot analysis of tumor EGFR expression was conducted in those 6 types of tumor models. RESULTS: (18)F-FBEM-Cys-Z(EGFR:1907) binds to EGFR with low nanomolar affinity (37 nM) in A431 cells. (18)F-FBEM-Cys-Z(EGFR:1907) rapidly accumulated in the tumor and cleared from most of the normal organs except the liver and kidneys at 3 h after injection, allowing excellent tumor-to-normal tissue contrast to be obtained. In the A431 tumor xenograft model, coinjection of the PET probe with 45 µg of Ac-Cys-Z(EGFR:1907) was able to improve the tumor uptake (3.9 vs. 8.1 percentage of the injected radioactive dose per gram of tissue, at 3 h after injection) and tumor imaging contrast, whereas coinjection with 500 µg of Ac-Cys-Z(EGFR:1907) successfully blocked the tumor uptake significantly (8.1 vs. 1.0 percentage of the injected radioactive dose per gram of tissue, at 3 h after injection, 88% inhibition, P < 0.05). Moderate correlation was found between the tumor tracer uptake at 3 h after injection quantified by PET and EGFR expression levels measured by Western blot assay (P = 0.007, R = 0.59). CONCLUSION: (18)F-FBEM-Cys-Z(EGFR:1907) is a novel protein scaffold-based PET probe for imaging EGFR overexpression of tumors, and its ability to differentiate tumors with high and low EGFR expression in vivo holds promise for future clinical translation.


Asunto(s)
Benzamidas , Receptores ErbB/biosíntesis , Maleimidas , Neoplasias Experimentales/diagnóstico por imagen , Radiofármacos , Proteínas Recombinantes de Fusión , Animales , Benzamidas/síntesis química , Benzamidas/farmacocinética , Western Blotting , Maleimidas/síntesis química , Maleimidas/farmacocinética , Ratones , Ratones Desnudos , Trasplante de Neoplasias , Neoplasias Experimentales/metabolismo , Tomografía de Emisión de Positrones , Radiofármacos/síntesis química , Radiofármacos/farmacocinética , Proteínas Recombinantes de Fusión/síntesis química , Proteínas Recombinantes de Fusión/farmacocinética , Distribución Tisular , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
13.
Bioconjug Chem ; 23(6): 1149-56, 2012 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-22621238

RESUMEN

UNLABELLED: The epidermal growth factor receptor 1 (EGFR) has become an attractive target for cancer molecular imaging and therapy. An Affibody protein with strong binding affinity for EGFR, ZEGFR:1907, has been reported. We are interested in translating Affibody molecules to potential clinical optical imaging of EGFR positive cancers. In this study, four anti-EGFR Affibody based near-infrared (NIR) fluorescent probes were thus prepared, and their in vivo performance was evaluated in the mice bearing EGFR positive subcutaneous A431 tumors. METHODS: The Affibody analogue, Ac-Cys-ZEGFR:1907, was synthesized using solid-phase peptide synthesis method. The purified small protein was then site-specifically conjugated with four NIR fluorescent dyes, Cy5.5-monomaleimide, Alex-Fluor-680-maleimide, SRfluor680-maleimide, or IRDye-800CW-maleimide, to produce four optical probes-Cy5.5-ZEGFR:1907, Alexa680-ZEGFR:1907, SR680-ZEGFR:1907, and 800CW-ZEGFR:1907. The EGFR binding property and specificity of the four NIR fluorescent Affibody probes were studied by fluorescence microscopy using high EGFR expressing A431 cells and low expressing MCF7 cells. The binding affinities of the probes (KD) to EGFR were further determined by flow cytometry. In vivo optical imaging of the four probes was performed in the mice bearing subcutaneous A431 tumors. RESULTS: The four NIR optical probes were prepared in high purity. In vitro cell imaging studies demonstrated that all of them could specifically bind to EGFR positive A431 cells while showing minimum uptake in low EGFR expressing MCF7 cells. Flow cytometry showed that Cy5.5-ZEGFR:1907 and Alexa680-ZEGFR:1907 possessed high binding affinity in low nanomolar range (43.6 ± 8.4 and 28.3 ± 4.9, respectively). In vivo optical imaging of the four probes revealed that they all showed fast tumor targeting ability and good tumor-to-normal tissue contrast as early as 0.5 h postinjection (p.i.). The tumor-to-normal tissue ratio reached a peak at 2 to 4 h p.i. by regional of interest (ROI) analysis of images. Ex vivo studies further demonstrated that the four probes had high tumor uptakes. Particularly, Cy5.5-ZEGFR:1907 and Alex680-ZEGFR:1907 displayed higher tumor-to-normal tissue ratios than those of the other two probes. CONCLUSION: This work demonstrates that Affibody proteins can be modified with different NIR fluorescent dyes and used for imaging of EGFR expressing tumors. Different NIR fluorescent dyes have variable impact on the in vitro binding and in vivo performance of the resulting Affibody based probes. Therefore, selection of an appropriate NIRF label is important for optical probe development. The probes developed are promising for further tumor imaging applications and clinical translation. Particularly, Alex680-ZEGFR:1907 and Cy5.5-ZEGFR:1907 are excellent candidates as EGFR-targeted probes for optical imaging.


Asunto(s)
Receptores ErbB/análisis , Colorantes Fluorescentes , Neoplasias/diagnóstico , Imagen Óptica/métodos , Proteínas Recombinantes de Fusión , Animales , Carbocianinas/química , Línea Celular Tumoral , Femenino , Colorantes Fluorescentes/química , Humanos , Ratones , Ratones Desnudos , Modelos Moleculares , Proteínas Recombinantes de Fusión/química
14.
J Biol Inorg Chem ; 17(5): 709-18, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22418921

RESUMEN

Epidermal growth factor receptor 1 (EGFR) is an attractive target for radionuclide therapy of head and neck carcinomas. Affibody molecules against EGFR (Z(EGFR)) show excellent tumor localizations in imaging studies. However, one major drawback is that radiometal-labeled Affibody molecules display extremely high uptakes in the radiosensitive kidneys which may impact their use as radiotherapeutic agents. The purpose of this study is to further explore whether radiometal-labeled human serum albumin (HSA)-Z(EFGR) bioconjugates display desirable profiles for the use in radionuclide therapy of EGFR-positive head and neck carcinomas. The Z(EFGR) analog, Ac-Cys-Z(EGFR:1907), was site-specifically conjugated with HSA. The resulting bioconjugate 1,4,7,10-tetraazacyclododecane-1,4,7-triacetic acid (DO3A)-HSA-Z(EGFR:1907) was then radiolabeled with either (64)Cu or (177)Lu and subjected to in vitro cell uptake and internalization studies using the human oral squamous carcinoma cell line SAS. Positron emission tomography (PET), single photon emission computed tomography (SPECT), and biodistribution studies were conducted using SAS-tumor-bearing mice. Cell studies revealed a high (8.43 ± 0.55 % at 4 h) and specific (0.95 ± 0.09 % at 4 h) uptake of (177)Lu-DO3A-HSA-Z(EGFR:1907) as determined by blocking with nonradioactive Z(EGFR:1907). The internalization of (177)Lu-DO3A-HSA-Z(EGFR:1907) was verified in vitro and found to be significantly higher than that of (177)Lu-labeled Z(EFGR) at 2-24 h of incubation. PET and SPECT studies showed good tumor imaging contrasts. The biodistribution of (177)Lu-DO3A-HSA-Z(EGFR:1907) in SAS-tumor-bearing mice displayed high tumor uptake (5.1 ± 0.44 % ID/g) and liver uptake (31.5 ± 7.66 % ID/g) and moderate kidney uptake (8.5 ± 1.08 % ID/g) at 72 h after injection. (177)Lu-DO3A-HSA-Z(EGFR:1907) shows promising in vivo profiles and may be a potential radiopharmaceutical for radionuclide therapy of EGFR-expressing head and neck carcinomas.


Asunto(s)
Carcinoma de Células Escamosas/diagnóstico por imagen , Receptores ErbB/metabolismo , Neoplasias de Cabeza y Cuello/diagnóstico por imagen , Radiofármacos/química , Radiofármacos/farmacocinética , Secuencia de Aminoácidos , Animales , Carcinoma de Células Escamosas/radioterapia , Línea Celular Tumoral , Cobre/química , Cobre/farmacocinética , Receptores ErbB/genética , Regulación Neoplásica de la Expresión Génica , Neoplasias de Cabeza y Cuello/radioterapia , Compuestos Heterocíclicos con 1 Anillo/química , Compuestos Heterocíclicos con 1 Anillo/farmacocinética , Humanos , Lutecio/química , Lutecio/farmacocinética , Ratones , Ratones Desnudos , Modelos Moleculares , Datos de Secuencia Molecular , Péptidos/química , Péptidos/metabolismo , Péptidos/farmacocinética , Tomografía de Emisión de Positrones , Albúmina Sérica/química , Albúmina Sérica/farmacocinética , Carcinoma de Células Escamosas de Cabeza y Cuello , Distribución Tisular , Tomografía Computarizada de Emisión de Fotón Único
15.
ACS Macro Lett ; 1(6): 753-757, 2012 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-35607098

RESUMEN

We present the design, synthesis, and characterization of a novel cancer biomarker delivery platform, the star-shaped four-arm poly(ethylene glycol) (StarPEG). Using the multidisplay platform we were able to synthesize a bombesin (BBN) positron emission tomography (PET) probe featuring four copies of 8-Aoc-BBN peptides (where 8-Aoc is 8-aminooctanic acid), which we named StarPEG-BBN. Cell binding studies showed that StarPEG-BBN had a good binding affinity to PC3 cells (IC50 = 65.3 ± 3.4 nM). Cell uptake studies showed that the binding was specific (blocking vs no-blocking, P < 0.05). Mice were then implanted with PC3 cells and divided into two groups, one injected with 64Cu-StarPEG-BBN and the other 250 µg of unlabeled 8-Aoc-BBN along with 64Cu-StarPEG-BBN. In vivo images revealed that StarPEG-BBN had good tumor uptake (4.2 ± 0.4% ID/g at 4 h post-injection (p.i.)) and was significantly blocked by coinjection of unlabeled 8-Aoc-BBN at 4 h p.i. (P = 0.003). The small animal PET quantification was further verified by the biodistribution study at 24 h p.i. Our study demonstrated that the novel four-arm PEG platform StarPEG as a cancer biomarker multimerization/delivery platform conserves binding specificity, improves drug loading, is capable of achieving good tumor uptake, and has great potential in cancer treatment and molecular imaging.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA