Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Molecules ; 29(10)2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38792214

RESUMEN

BACKGROUND: Staphylococcus aureus is a common pathogenic microorganism in humans and animals. Type II NADH oxidoreductase (NDH-2) is the only NADH:quinone oxidoreductase present in this organism and represents a promising target for the development of anti-staphylococcal drugs. Recently, myricetin, a natural flavonoid from vegetables and fruits, was found to be a potential inhibitor of NDH-2 of S. aureus. The objective of this study was to evaluate the inhibitory properties of myricetin against NDH-2 and its impact on the growth and expression of virulence factors in S. aureus. RESULTS: A screening method was established to identify effective inhibitors of NDH-2, based on heterologously expressed S. aureus NDH-2. Myricetin was found to be an effective inhibitor of NDH-2 with a half maximal inhibitory concentration (IC50) of 2 µM. In silico predictions and enzyme inhibition kinetics further characterized myricetin as a competitive inhibitor of NDH-2 with respect to the substrate menadione (MK). The minimum inhibitory concentrations (MICs) of myricetin against S. aureus strains ranged from 64 to 128 µg/mL. Time-kill assays showed that myricetin was a bactericidal agent against S. aureus. In line with being a competitive inhibitor of the NDH-2 substrate MK, the anti-staphylococcal activity of myricetin was antagonized by MK-4. In addition, myricetin was found to inhibit the gene expression of enterotoxin SeA and reduce the hemolytic activity induced by S. aureus culture on rabbit erythrocytes in a dose-dependent manner. CONCLUSIONS: Myricetin was newly discovered to be a competitive inhibitor of S. aureus NDH-2 in relation to the substrate MK. This discovery offers a fresh perspective on the anti-staphylococcal activity of myricetin.


Asunto(s)
Flavonoides , Pruebas de Sensibilidad Microbiana , Staphylococcus aureus , Flavonoides/farmacología , Flavonoides/química , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/enzimología , Antibacterianos/farmacología , Antibacterianos/química , NADH Deshidrogenasa/antagonistas & inhibidores , NADH Deshidrogenasa/metabolismo , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/química , Animales , Proteínas Bacterianas/antagonistas & inhibidores , Proteínas Bacterianas/metabolismo , Humanos , Factores de Virulencia/antagonistas & inhibidores , Factores de Virulencia/metabolismo
2.
Microbiol Spectr ; 12(1): e0323723, 2024 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-38038452

RESUMEN

IMPORTANCE: The use of plant extracts is increasing as an alternative to synthetic compounds, especially antibiotics. However, there is no sufficient knowledge on the mechanisms and potential risks of antibiotic resistance induced by these phytochemicals. In the present study, we found that stable drug resistant mutants of E. coli emerged after repetitive exposure to sanguinarine and demonstrated that the AcrB efflux pump contributed to the emerging of induced and intrinsic resistance of E. coli to this phytochemical. Our results offered some insights into comprehending and preventing the onset of drug-resistant strains when utilizing products containing sanguinarine.


Asunto(s)
Benzofenantridinas , Proteínas de Escherichia coli , Escherichia coli , Isoquinolinas , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Farmacorresistencia Bacteriana Múltiple , Antibacterianos/farmacología , Antibacterianos/química , Pruebas de Sensibilidad Microbiana , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/genética
3.
Int J Biol Macromol ; 241: 124419, 2023 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-37080409

RESUMEN

The intestinal mucosal barrier is one of the important barriers to prevent harmful substances and pathogens from entering the body environment and to maintain intestinal homeostasis. This study investigated the reparative effect and possible mechanism of Tetrastigma hemsleyanum polysaccharides (THP) on ceftriaxone-induced intestinal mucosal damage. Our results suggested that THP repaired the mechanical barrier damage of intestinal mucosa by enhancing the expression of intestinal tight junction proteins, reducing intestinal mucosal permeability and improving the pathological state of intestinal epithelial cells. Intestinal immune and chemical barrier was further restored by THP via the increment of the body's cytokine levels, intestinal SIgA levels, intestinal goblet cell number, intestinal mucin-2 levels, and short-chain fatty acid levels. In addition, THP increased the abundance of probiotic bacteria (such as Lactobacillus), reduced the abundance of harmful bacteria (such as Enterococcus) to repair the intestinal biological barrier, restored intestinal mucosal barrier function, and maintains intestinal homeostasis. The possible mechanisms were related to sphingolipid metabolism, linoleic acid metabolism, and D-glutamine and D-glutamate metabolism. Our results demonstrated the potential therapeutic effect of THP against intestinal flora disorders and intestinal barrier function impairment caused by antibiotics.


Asunto(s)
Antibacterianos , Microbiota , Animales , Ratones , Antibacterianos/efectos adversos , Antibacterianos/metabolismo , Mucosa Intestinal/metabolismo , Polisacáridos/química , Metaboloma
4.
Environ Toxicol ; 38(5): 1196-1210, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36880448

RESUMEN

One of the important monitoring indicators of the air pollution is atmospheric fine particulate matter (PM2.5 ), which can induce lung inflammation after inhalation. Coelonin can alleviate PM2.5 -induced macrophage damage through anti-inflammation. However, its molecular mechanism remains unclear. We hypothesized that macrophage damage may involve the release of inflammatory cytokines, activation of inflammatory pathways, and pyrosis induced by inflammasome. In this study, we evaluated the anti-inflammation activity of coelonin in PM2.5 -induced macrophage and its mechanism of action. Nitric oxide (NO) and reactive oxygen species (ROS) production were measured by NO Assay kit and dichlorofluorescein-diacetate (DCFH-DA), and apoptosis were measured by Flow cytometry and TUNEL staining. The concentration of inflammatory cytokines production was measured with cytometric bead arrays and ELISA kits. The activation of NF-κB signaling pathway and NLRP3 inflammasome were measured by immunofluorescence, quantitative reverse transcription-polymerase chain reaction and western blot. As expected, coelonin pretreatment reduced NO production significantly as well as alleviated cell damage by decreasing ROS and apoptosis. It decreased generation of interleukin (IL)-6 and tumor necrosis factor (TNF)-α in PM2.5 -induced RAW264.7 and J774A.1 cells. Moreover, coelonin markedly inhibited upregulating the expression of toll-like receptor (TLR)4 and cyclo-oxygenase (COX)-2, blocked activation of p-nuclear factor-kappa B (NF-κB) signaling pathway, and suppressed expression of NLRP3 inflammasome, ASC, GSDMD, IL-18 and IL-1ß. In conclusion, the results showed that coelonin could protect against PM2.5 -induced macrophage damage via suppressing TLR4/NF-κB/COX-2 signaling pathway and NLRP3 inflammasome activation in vitro.


Asunto(s)
Inflamasomas , FN-kappa B , FN-kappa B/metabolismo , Inflamasomas/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Ciclooxigenasa 2/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Receptor Toll-Like 4/metabolismo , Transducción de Señal , Macrófagos/metabolismo , Citocinas/metabolismo , Interleucina-6 , Antiinflamatorios/farmacología , Material Particulado/toxicidad
5.
Microbiol Spectr ; : e0320522, 2023 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-36943047

RESUMEN

The increasing prevalence of antibiotic resistance causes an urgent need for alternative agents to combat drug-resistant bacterial pathogens. Plant-derived compounds are promising candidates for the treatment of infections caused by antibiotic-resistant bacteria. Hinokitiol (ß-thujaplicin), a natural tropolone derivative found in the heartwood of cupressaceous plants, has been widely used in oral and skin care products as an antimicrobial agent. The aim of this work was to study the synergy potential of hinokitiol with antibiotics against Staphylococcus aureus, which is an extremely successful opportunistic pathogen capable of causing nosocomial and community-acquired infections worldwide. The MIC was determined by the broth microdilution method, and the effect of combinations was evaluated through fractional inhibitory concentration indices (FICI). The mechanism behind this synergy was also investigated by using fluorescence spectroscopy and high-performance liquid chromatography (HPLC). The MICs of hinokitiol alone against most S. aureus strains were 32 µg/mL. Selectively synergistic activities (FICIs of ≤0.5) were observed for combinations of this phytochemical with tetracyclines against all tested strains of S. aureus. Importantly, hinokitiol at 1 µg/mL completely or partially reversed tetracycline resistance in staphylococcal isolates. The increased accumulation of tetracycline inside S. aureus in the presence of hinokitiol was observed. In addition, hinokitiol promoted the uptake of ethidium bromide (EB) in bacterial cells without membrane depolarization, suggesting that it may be an efflux pump inhibitor. IMPORTANCE The disease caused by S. aureus is a public health issue due to the continuing emergence of drug-resistant strains, particularly methicillin-resistant S. aureus (MRSA). Tetracyclines, one of the old classes of antimicrobials, have been used for the treatment of infections caused by S. aureus. However, the increased resistance to tetracyclines together with their toxicity have limited their use in the clinic. Here, we demonstrated that the combination of hinokitiol and tetracyclines displayed synergistic antibacterial activity against S. aureus, including tetracycline-resistant strains and MRSA, offering a potential alternative approach for the treatment of infections caused by this bacterium.

6.
Front Pharmacol ; 13: 838873, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35370633

RESUMEN

Tetrastigma hemsleyanum Diels et Gilg (Sanyeqing, SYQ) has traditionally been used to treat inflammation, high fever and improve immune function of patients. Polysaccharides have been proved to be one of the important components of SYQ. Previous studies have confirmed the antipyretic and antitumor effects of polysaccharides from SYQ (SYQP), and clarified that SYQP could enhance immunity through TLR4 signalling pathway. However, there were more possibilities for the mechanism by which SYQP exerted immunomodulatory effects and the role of SYQP in acute respiratory distress syndrome (ARDS) is elusive. The purpose of this study was further to explain the bidirectional modulation of immunity mechanism of SYQP in vitro and its effect in LPS-induced ARDS in vivo. Experimental results showed that SYQP significantly stimulated gene expressions of TLR1, TLR2 and TLR6 and secretion of cytokines in RAW264.7 cells. Individual or combined application of TLR2 antagonist C29 and TLR4 antagonist TAK-242 could reduce SYQP-mediated stimulation of cytokine secretion in RAW264.7 cells and mouse peritoneal macrophages (MPMs) to varying degrees. On the other hand, SYQP markedly inhibited the expression levels of inflammatory cytokines, NO, iNOS and COX-2 in LPS-treatment RAW264.7 cells. Moreover, in vivo results indicated that SYQP significantly reduced LPS-induced damage in ARDS mice through alleviating LPS-induced pulmonary morphological damage, inhibiting myeloperoxidase (MPO) expression levels, ameliorating the inflammatory cells in bronchoalveolar lavage fluid (BALF) and improving hematological status. Meanwhile, SYQP evidently reduced IL-6, TNF-α and IFN-γ secretion, the overexpression levels of TLR2 and TLR4, as well as the phosphorylation of NF-κB p65. In addition, SYQP reduced the phosphorylation of JAK2 and STAT1 and the overexpression of NLRP3, caspase-1, caspase-3 and caspase-8 in lung tissues of ARDS mice. In summary, our study confirmed that SYQP induced bidirectional immunity and ameliorated LPS-induced acute respiratory distress syndrome in mice through TLR2/TLR4-NF-κB, NLRP3/caspase and JAK/STAT signaling pathways, which provided a theoretical basis for further use of SYQP.

7.
Indian J Microbiol ; 61(2): 195-202, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33927460

RESUMEN

Biphenanthrene compound, 4, 8, 4', 8'-tetramethoxy (1, 1'-biphenanthrene)-2, 7, 2', 7'-tetrol (LF05), recently isolated from fibrous roots of Bletilla striata, exhibits antibacterial activity against several Gram-positive bacteria. In this study, we investigated the antibacterial properties, potential mode of action and cytotoxicity. Minimum inhibitory concentrations (MICs) tests showed LF05 was active against all tested Gram-positive strains, including methicillin-resistant Staphylococcus aureus (MRSA) and staphylococcal clinical isolates. Minimum bactericidal concentration (MBC) tests demonstrated LF05 was bactericidal against S. aureus ATCC 29213 and Bacillus subtilis 168 whereas bacteriostatic against S. aureus ATCC 43300, WX 0002, and other strains of S. aureus. Time-kill assays further confirmed these observations. The flow cytometric assay indicated that LF05 damaged the cell membrane of S. aureus ATCC 29213 and B. subtilis 168. Consistent with this finding, 4 × MIC of LF05 caused release of ATP in B. subtilis 168 within 10 min. Checkerboard test demonstrated LF05 exhibited additive effect when combined with vancomycin, erythromycin and berberine. The addition of rat plasma or bovine serum albumin to bacterial cultures caused significantly loss in antibacterial activity of LF05. Interestingly, LF05 was highly toxic to several tumor cells. Results of these studies indicate that LF05 is bactericidal against some Gram-positive bacteria and acts as a membrane structure disruptor. The application of biphenanthrene in the treatment of S. aureus infection, especially local infection, deserves further study.

8.
Front Pharmacol ; 12: 609059, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33841142

RESUMEN

Tetrastigma hemsleyanum Diels et Gilg is a valuable Chinese medicinal herb with a long history of clinical application. Our previous study isolated and characterized a purified polysaccharide from the aerial part of Tetrastigma hemsleyanum (SYQP) and found it having antipyretic and antitumor effects in mice. A preliminary mechanistic study suggests these effects may be related to the binding of toll-like receptor (TLR4). The objective of this study is to further explore the detailed stimulating characteristics of SYQP on TLR4 signaling pathway and its in vivo immune regulating effect. We use HEK-BLUE hTLR4, mouse and human macrophage cell lines, as research tools. In vitro results show SYQP activated HEK-BLUE hTLR4 instead of HEK-BLUE Null cells. The secretion and the mRNA expression of cytokines related to TLR4 signaling significantly increased after SYQP treatment in both PMA-induced THP-1 and RAW264.7 macrophage cell lines. The TLR4 antagonist TAK-242 can almost completely abolish this activation. Furthermore, molecules such as IRAK1, NF-κB, MAPKs, and IRF3 in both the MyD88 and TRIF branches were all activated without pathway selection. In vivo results show SYQP enhanced antigen-specific spleen lymphocyte proliferation and serum IgG levels in OVA-immunized C57BL/6 mice. Orally administered 200 mg/kg SYQP induced obvious tumor regression, spleen weight increase, and the upregulation of the mRNA expression of TLR4-related cytokines in Lewis lung carcinoma-bearing mice. These results indicate SYQP can act as both a human and mouse TLR4 agonist and enhance immune responses in mice (p < 0.05). This study provides a basis for the development and utilization of SYQP as a new type of TLR4 agonist in the future.

9.
Front Microbiol ; 12: 647289, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33717044

RESUMEN

The rapid rise of antibiotic resistance causes an urgent need for new antimicrobial agents with unique and different mechanisms of action. The respiratory chain is one such target involved in the redox balance and energy metabolism. As a natural quinone compound isolated from the root of Salvia miltiorrhiza Bunge, cryptotanshinone (CT) has been previously demonstrated against a wide range of Gram-positive bacteria including multidrug-resistant pathogens. Although superoxide radicals induced by CT are proposed to play an important role in the antibacterial effect of this agent, its mechanism of action is still unclear. In this study, we have shown that CT is a bacteriostatic agent rather than a bactericidal agent. Metabolome analysis suggested that CT might act as an antibacterial agent targeting the cell membrane. CT did not cause severe damage to the bacterial membrane but rapidly dissipated membrane potential, implying that this compound could be a respiratory chain inhibitor. Oxygen consumption analysis in staphylococcal membrane vesicles implied that CT acted as respiratory chain inhibitor probably by targeting type II NADH:quinone dehydrogenase (NDH-2). Molecular docking study suggested that the compound would competitively inhibit the binding of quinone to NDH-2. Consistent with the hypothesis, the antimicrobial activity of CT was blocked by menaquinone, and the combination of CT with thioridazine but not 2-n-heptyl-4-hydroxyquinoline-N-oxide exerted synergistic activity against Staphylococcus aureus. Additionally, combinations of CT with other inhibitors targeting different components of the bacterial respiratory chain exhibit potent synergistic activities against S. aureus, suggesting a promising role in combination therapies.

10.
Food Chem ; 352: 129438, 2021 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-33690072

RESUMEN

As one of the medicine homologous foods in China, Atractylodis Macrocephalae Rhizoma (AMR) is usually distributed after thermal processing, which raised the possibility of acrylamide pollution and a potential carcinogenic risk. In this study, a method was developed for the determination of the acrylamide in AMR using graphited multiwalled carbon nanotubes as the dispersive solid phase extraction sorbent and liquid chromatography tandem mass spectrometry. The concentration of acrylamide was investigated at processing conditions of 80℃-210℃ and 5 min-100 min. Method validation results demonstrated the reliability of the method with good linearity, accuracy and precision. Significant increment of acrylamide was found in AMR after thermal processing with the highest concentration at 9826 µg/kg, which led to a margin of exposure at 90.83-181.7 according to the BMDL10 of carcinogenicity at 0.17 mg/kg, indicating a high health risk of taking thermally processed AMR, and monitoring and controlling should be considered.


Asunto(s)
Acrilamida/análisis , Atractylodes/química , Calor , Rizoma/química , Acrilamida/toxicidad , Nanotubos de Carbono/química , Reproducibilidad de los Resultados , Medición de Riesgo
11.
J Ethnopharmacol ; 253: 112663, 2020 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-32045682

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Tetrastigma hemsleyanum Diels et Gilg (Sanyeqing) is traditionally used as a folk medicine for the treatments of inflammation, high fever, hepatitis and cancer, and can improve the immune function of the patient. It belongs to the family of Vitaceae, and is mainly distributed in southeast China (Yunnan province) and can be found in India (Andaman Islands), Myanmar, Thailand, Vietnam, Malaysia and Indonesia in the valleys with 1100-1300 m above the sea level. AIM OF THE STUDY: The present study aimed to characterize the chemical properties of a purified polysaccharide extracted from the aerial part of Tetrastigma hemsleyanum (SYQP) and investigate its antipyretic and antitumor effects in mice models. MATERIALS AND METHODS: Water-soluble crude polysaccharides from the aerial parts of Tetrastigma hemsleyanum were extracted and fractionated by DEAE and gel permeation chromatography. Homogeneity, molecular weight, monosaccharide composition, and FTIR analysis were performed to characterize the SYQP. Antipyretic effect of SYQP was examined using Brewer's yeast induced hyperthermia test. Antitumor effect was investigated using H22 tumor bearing mice. The serum cytokines were determined to evaluated the biological activities of SYQP. RESULTS: SYQP was composed of galacturonic acid (GalA), glucose (Glc), mannose (Man), arabinose (Ara), galactose (Gal), and rhamnose (Rha) with a molar ratio of 11.3:7.1:2.5:1.0:0.9:0.5 and it had an average molecular weight of 66.2 kDa. The oral administration of SYQP at 200 and 400 mg/kg could markedly suppress the hyperthermia of mice induced by Brewer's yeast and decrease the production of cytokines especially prostaglandin E2 (PGE2) in the serum of mice. SYQP inhibited the growth of H22 tumor in mice with inhibitory rate of 39.9% at the administration dose of 200 mg/kg and increased the production of cytokines such as tumor necrosis factor-alpha (TNF-a) and interferon γ (IFN-γ). Experimental results showed that the preventive administration of SYQP before lipopolysaccharide (LPS) reduced the high cytokine levels such as IL-6, IL-10 and IFN-γ, indicating that SYQP might act as a competitor with LPS to interact with toll like receptor 4 (TLR4), which further regulated the secretion of cytokines. CONCLUSION: The anti-inflammatory and antitumor activities of SYQP might be related to its regulation of host immune function by controlling the secretion of cytokines.


Asunto(s)
Antiinflamatorios/uso terapéutico , Antineoplásicos/uso terapéutico , Antipiréticos/uso terapéutico , Hipertermia/tratamiento farmacológico , Neoplasias/tratamiento farmacológico , Polisacáridos/uso terapéutico , Vitaceae , Animales , Línea Celular , Citocinas/sangre , Dinoprostona/sangre , Humanos , Hipertermia/inducido químicamente , Lipopolisacáridos , Linfocitos/efectos de los fármacos , Masculino , Ratones Endogámicos BALB C , Neoplasias/patología , Componentes Aéreos de las Plantas , Saccharomyces cerevisiae , Bazo/citología , Carga Tumoral/efectos de los fármacos
12.
Artículo en Inglés | MEDLINE | ID: mdl-30105071

RESUMEN

Atherosclerosis is the commonest cause of death in the world and one of the most important processes that occurs with increasing age because it is accompanied by progressive endothelial dysfunction. Recent studies demonstrated that Sirtuin 1 (SIRT1) might potentially affect cell senescence. However, the effect of SIRT1 on the regulation of human umbilical vein endothelial cell (HUVEC) senescence with total flavonoids (TFs) has not been addressed previously. This study investigated how SIRT1 functions in the process of HUVEC senescence when TFs are present and identified the potential molecular mechanisms involved. Using a model of HUVEC senescence induced by angiotensin II, TFs pretreatment reduced the percentage of senescence-associated ß-galactosidase (SA-ß-gal) cells and p53 mRNA expression. The level of SIRT1 protein and E2F1 decreased during HUVEC senescence and could be partially recovered when cells were coincubated with TFs, while the levels of proteins p53 and p21 increased during cell senescence and diminished in response to the TFs treatment. When coincubated with 20 mM nicotinamide, the results with SA-ß-gal-positive cells and the expression of SIRT1, E2F1, p53, and p21 were contrary to that obtained with only TFs pretreatment. The data indicate that the TFs exert their effect on HUVEC senescence through SIRT1.

13.
Front Microbiol ; 9: 1593, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30065715

RESUMEN

New classes of antibiotics with different mechanisms of action are urgently required for combating antimicrobial resistance. Blestriacin, a dihydro-biphenanthrene with significant antibacterial activity, was recently isolated from the fibrous roots of Bletilla striata. Here, we report the further characterization of the antimicrobial potential and mode of action of blestriacin. The phenanthrene compound inhibited the growth of all tested clinical isolates of Staphylococcus aureus including methicillin-resistant S. aureus (MRSA). The minimum inhibitory concentrations (MICs) of blestriacin against these pathogens ranged from 2 to 8 µg/mL. Minimum bactericidal concentration (MBC) tests were conducted, and the results demonstrated that blestriacin was bactericidal against S. aureus. This effect was confirmed by the time-kill assays. At bactericidal concentrations, blestriacin caused loss of membrane potential in B. subtilis and S. aureus and disrupted the bacterial membrane integrity of the two strains. The spontaneous mutation frequency of S. aureus to blestriacin was determined to be lower than 10-9. The selection and whole genome sequencing of the blestriacin -resistant mutants of S. aureus indicated that the development of blestriacin resistance in S. aureus involves mutations in multi-genes. All these observations can be rationalized by the suggestion that membrane is a biological target of blestriacin.

14.
BMC Complement Altern Med ; 17(1): 273, 2017 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-28532402

RESUMEN

BACKGROUND: Influenza represents a serious public health concern. The emergence of resistance to anti-influenza drugs underlines the need to develop new drugs. This study aimed to evaluate the anti-influenza viral activity and possible mechanisms of 12 phenanthrenes from the medicinal plant Bletilla striata (Orchidaceae family). METHODS: Twelve phenanthrenes were isolated and identified from B. striata. Influenza virus A/Sydney/5/97 (H3N2) propagated in embryonated chicken eggs was used. Phenanthrenes mixed with the virus were incubated at 37 °C for 1 h and then inoculated into 9-day-old embryonated chicken eggs via the allantoic route to survey the antiviral activity in vivo. A (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium) (MTS)-based assay was performed to evaluate the reduction of cytopathic effect induced by H3N2 on Madin-Darby canine kidney (MDCK) cells. The hemagglutination inhibition assay was used to study the blockage of virus receptors by the phenanthrenes, and the neuraminidase (NA) inhibition assay to evaluate the effects of the release of virus. The synthesis of influenza viral matrix protein mRNA in response to compound treatment was measured by real-time polymerase chain reaction. RESULTS: This study showed that phenanthrenes 1, 2, 3, 4, 6, 9, 10, 11, and 12 significantly inhibited the viruses in vivo, with inhibition rates of 20.7, 79.3, 17.2, 34.5, 34.5, 34.5, 44.8, 75.9, and 34.5%, respectively. In MDCK models, the phenanthrenes did not show significant antiviral activity when administered as pretreatment, while phenanthrenes 2, 3, 4, 6, 7 10, and 11 exhibited inhibitory activities as simultaneous treatment with 50% inhibition concentration (IC50) ranging from 14.6 ± 2.4 to 43.3 ± 5.3 µM. The IC50 ranged from 18.4 ± 3.1 to 42.3 ± 3.9 µM in the post-treatment assays. Compounds 1, 3, 4, 6, 10, and 11 exhibited an inhibitory effect on NA; and compounds 2, 3, 4 6, 7, 10, and 11 resulted in the reduced transcription of virus matrix protein mRNA. However, no compound could inhibit hemagglutination by the influenza virus. CONCLUSION: Phenanthrenes from B. striata had strong anti-influenza viral activity in both embryonated eggs and MDCK models, and diphenanthrenes seemed to have stronger inhibition activity compared with monophenanthrenes.


Asunto(s)
Antivirales/farmacología , Subtipo H3N2 del Virus de la Influenza A/efectos de los fármacos , Gripe Humana/virología , Orchidaceae/química , Fenantrenos/farmacología , Extractos Vegetales/farmacología , Plantas Medicinales/química , Antivirales/química , Antivirales/aislamiento & purificación , Humanos , Subtipo H3N2 del Virus de la Influenza A/fisiología , Gripe Humana/tratamiento farmacológico , Fenantrenos/química , Fenantrenos/aislamiento & purificación , Extractos Vegetales/química , Replicación Viral/efectos de los fármacos
15.
BMC Complement Altern Med ; 16(1): 491, 2016 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-27899152

RESUMEN

BACKGROUND: Bletillae Rhizoma, the tuber of Bletilla striata, has been used in Chinese traditional medicine to treat infectious diseases. Chemical studies indicated that phenanthrene was one of the most important components of the herb, with a broad spectrum of antibiotic activity against Gram-positive bacteria. The objective of this study was to further characterize the antibacterial activity of the phenanthrene fraction from the fibrous root of the pseudobulb of B. striata. METHODS: The phenanthrene fraction (EF60) from the ethanol extract of fibrous roots of Bletilla striata pseudobulbs was isolated using polyamide column chromatography. The antibacterial activity of the fraction was evaluated in vitro using a 96-well microtiter plate and microbroth dilution method. The cytotoxicity of EF60 against mammalian cells was tested by hemolysis and MTT assays. RESULTS: EF60 was obtained using alcohol extraction and polyamide column chromatography, with a yield of 14.9 g per 1 kg of the fibrous roots of B. striata. In vitro tests indicated that EF60 was active against all tested strains of Staphylococcus aureus, including clinical isolates and methicillin-resistant S. aureus (MRSA). The minimum inhibitory concentration (MIC) values of EF60 against these pathogens ranged from 8 to 64 µg/mL. Minimum bactericidal concentration tests demonstrated that EF60 was bactericidal against S. aureus 3304 and ATCC 29213 and was bacteriostatic against S. aureus 3211, ATCC 25923, and ATCC 43300. Consistently, the time-kill assay indicated that EF60 could completely kill S. aureus ATCC 29213 at 2× the MIC within 3 h but could kill less than two logarithmic units of ATCC 43300, even at 4× the MIC within 24 h. The postantibiotic effects (PAE) of EF60 (4× MIC) against strains 29213 and 43300 were 2.0 and 0.38 h, respectively. Further studies indicated that EF60 (160 µg/mL) showed no cytotoxicity against human erythrocytes, and was minimally toxic to Human Umbilical Vein Endothelial Cells with an IC50 of 75 µg/mL. CONCLUSIONS: Our studies indicated that EF60 is worthy of further investigation as a potential phytotherapeutic agent for treating infections caused by S. aureus and MRSA.


Asunto(s)
Antibacterianos/aislamiento & purificación , Medicamentos Herbarios Chinos/farmacología , Orchidaceae/química , Fenantrenos/aislamiento & purificación , Staphylococcus aureus/efectos de los fármacos , Antibacterianos/farmacología , Antibacterianos/toxicidad , Citotoxinas/farmacología , Medicamentos Herbarios Chinos/toxicidad , Hemólisis , Humanos , Concentración de Iones de Hidrógeno , Técnicas In Vitro , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Orchidaceae/toxicidad , Fenantrenos/farmacología , Fenantrenos/toxicidad , Raíces de Plantas/química
16.
Zhong Yao Cai ; 39(3): 544-7, 2016 Mar.
Artículo en Chino | MEDLINE | ID: mdl-30088882

RESUMEN

Objective: To investigate the chemical constituents isolated from the fibrous roots of Bletilla striata, and to research their antibacterial activities. Methods: The native products were isolated and purified by silica gel, Sephadex LH-20 column chromatography and preparative HPLC. Their structures were elucidated on the basis of various spectroscopic analysis, and their antibacterial activities were tested by microbroth dilution method in a 96-well microtiter plate. Results: Seven compounds were isolated from the ethanol extract of the fibrous roots of Bletilla striata, and identified as p-hydroxybenzaldehyde( 1),2,7-dihydroxy-4-methoxy-9,10-dihydrophenanthrene( 2),4,5-dihydroxy-2-methoxy-9,10-dihydrohenanthrpene( 3),2-dihydroxy-4,7-dimethoxyphenan-threne( 4), militarine( 5), dactylorhin A( 6) and gastrodin( 7). Among them, compounds 2 ~ 4 showed moderate antibacterial activities against several Gram-positive bacterial strains( MIC 8 ~ 128 µg / m L),such as Staphylococcus aureus, Staphylococcus epidermidis, Enterococcus faecalis and Bacillus subtilis. Conclusion: The fibrous roots and tubers of Bletilla striata contain similar compounds, including glucosyloxybenzyl 2-isobutylmalates,and phenanthrene compounds, which showed antimicrobial activities against Gram-positive bacterial strains. And compounds 3,4 are isolated from Bletilla genus for the first time.


Asunto(s)
Orchidaceae , Antibacterianos , Alcoholes Bencílicos , Medicamentos Herbarios Chinos , Glucósidos , Fenantrenos , Raíces de Plantas , Staphylococcus aureus
17.
Artículo en Inglés | MEDLINE | ID: mdl-26483843

RESUMEN

Two peptides of Pt-A (Glu-Asn-Trp 429 Da) and Pt-B (Glu-Gln-Trp 443 Da) were isolated from venom liquor of Deinagkistrodon acutus. Their antiplatelet aggregation effects were evaluated with platelet-rich human plasma in vitro; the respective IC50 of Pt-A and Pt-B was 66 µM and 203 µM. Both peptides exhibited protection effects on ADP-induced paralysis in mice. After ADP administration, the paralysis time of different concentration of Pt-A and Pt-B lasted as the following: 80 mg/kg Pt-B (152.8 ± 57.8 s) < 40 mg/kg Pt-A (163.5 ± 59.8 s) < 20 mg/kg Pt-A (253.5 ± 74.5 s) < 4 mg/kg clopidogrel (a positive control, 254.5 ± 41.97 s) < 40 mg/kg Pt-B (400.8 ± 35.9 s) < 10 mg/kg Pt-A (422.8 ± 55.4 s), all of which were statistically shorter than the saline treatment (666 ± 28 s). Pulmonary tissue biopsy confirmed that Pt-A and Pt-B prevented the formation of thrombi in the lung. Unlike ADP injection alone, which caused significant reduction of peripheral platelet count, Pt-A treatment prevented the drop of peripheral platelet counts; interestingly, Pt-B could not, even though the same amount of Pt-B also showed protection effects on ADP-induced paralysis and thrombosis. More importantly, intravenous injection of Pt-A and Pt-B did not significantly increase the hemorrhage risks as clopidogrel.

18.
Biomed Res Int ; 2015: 501581, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26266258

RESUMEN

Cardamonin has promising potential in cancer prevention and therapy by interacting with proteins and modifying the expressions and activities, including factors of cell survival, proliferation, and angiogenesis. In our precious study, we have demonstrated that cardamonin suppressed vascular endothelial growth factor- (VEGF-) induced angiogenesis as evaluated in the mouse aortic ring assay. It is also known that microRNAs (miRNAs) play important roles in angiogenesis. Herein, we hypothesized whether antiangiogenesis effect of cardamonin in human umbilical vein endothelial cells (HUVECs) triggered by VEGF was associated with miRNAs. We found that cardamonin reduced the miR-21 expression induced by VEGF in HUVECs. Treatment with miR-21 mimics abolished the effects of cardamonin on VEGF-induced cell proliferation, migration, and angiogenesis in HUVECs. However, treatment with miR-21 inhibitors presented the opposite effects, indicating the vital role of miR-21 in this process. Our study provides a new insight of the preliminary mechanism of anti-VEGF-induced angiogenesis by cardamonin in HUVECs.


Asunto(s)
Chalconas/uso terapéutico , Regulación de la Expresión Génica/efectos de los fármacos , MicroARNs/genética , Neovascularización Patológica/tratamiento farmacológico , Neovascularización Patológica/genética , Factor A de Crecimiento Endotelial Vascular/efectos adversos , Animales , Movimiento Celular/efectos de los fármacos , Movimiento Celular/genética , Proliferación Celular/efectos de los fármacos , Chalconas/farmacología , Regulación hacia Abajo/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/citología , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Técnicas In Vitro , Espacio Intracelular/metabolismo , Ratones , MicroARNs/metabolismo , Neovascularización Fisiológica/efectos de los fármacos , Transfección
19.
J Nat Prod ; 78(4): 939-43, 2015 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-25760525

RESUMEN

Four new 9',10'-dihydro-biphenanthrenes, including an unprecedented 1,2'-linked biphenanthrene, 4,7,3',5'-tetramethoxy-9',10'-dihydro(1,2'-biphenanthrene)-2,7'-diol (1), a new 1,3'-linked biphenanthrene, 4,7,7'-trimethoxy-9',10'-dihydro(1,3'-biphenanthrene)-2,2',5'-triol (2), and two new 1,1'-linked biphenanthrenes, 4,7,4'-trimethoxy-9',10'-dihydro(1,1'-biphenanthrene)-2,2',7'-triol (3) and 4,7,3',5'-tetramethoxy-9',10'-dihydro(1,1'-biphenanthrene)-2,2',7'-triol (4), as well as two known biphenanthrenes (5, 6), were isolated from a 95% ethanol extract of the fibrous roots of Bletilla striata. Their structures were determined by spectroscopic and spectrometric methods. Atropisomerism of these compounds was considered based on their chiral optical properties and potential energy surface scans at the ab initio HF/3-21G level, which revealed their racemic mixture form. Compounds 2-6 showed potent antibacterial activities against six Gram-positive bacterial strains.


Asunto(s)
Antibacterianos/aislamiento & purificación , Antibacterianos/farmacología , Medicamentos Herbarios Chinos/aislamiento & purificación , Medicamentos Herbarios Chinos/farmacología , Orchidaceae/química , Fenantrenos/aislamiento & purificación , Fenantrenos/farmacología , Antibacterianos/química , Medicamentos Herbarios Chinos/química , Bacterias Grampositivas/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Resonancia Magnética Nuclear Biomolecular , Fenantrenos/química , Rizoma/química
20.
Appl Microbiol Biotechnol ; 99(7): 3127-39, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25573472

RESUMEN

Xylose is described as a component of bacterial exopolysaccharides in only a limited number of bacterial strains. A bacterial strain, Paenibacillus elgii, B69 was shown to be efficient in producing a xylose-containing exopolysaccharide. Sequence analysis was performed to identify the genes encoding the uridine diphosphate (UDP)-glucuronic acid decarboxylase required for the synthesis of UDP-xylose, the precursor of the exopolysaccharide. Two sequences, designated as Peuxs1 and Peuxs2, were found as the candidate genes for such enzymes. The activities of the UDP-glucuronic acid decarboxylases were proven by heterologous expression and real-time nuclear magnetic resonance analysis. The intracellular activity and effect of these genes on the synthesis of exopolysaccharide were further investigated by developing a thymidylate synthase based knockout system. This system was used to substitute the conventional antibiotic resistance gene system in P. elgii, a natural multi-antibiotic resistant strain. Results of intracellular nucleotide sugar analysis showed that the intracellular UDP-xylose and UDP-glucuronic acid levels were affected in Peuxs1 or Peuxs2 knockout strains. The knockout of either Peuxs1 or Peuxs2 reduced the polysaccharide production and changed the monosaccharide ratio. No polysaccharide was found in the Peuxs1/Peuxs2 double knockout strain. Our results show that P. elgii can be efficient in forming UDP-xylose, which is then used for the synthesis of xylose-containing exopolysaccharide.


Asunto(s)
Carboxiliasas/metabolismo , Paenibacillus/metabolismo , Polisacáridos/biosíntesis , Secuencia de Aminoácidos , Cromatografía Líquida de Alta Presión , Clonación Molecular , Farmacorresistencia Bacteriana/genética , Técnicas de Inactivación de Genes , Cinética , Espectroscopía de Resonancia Magnética , Datos de Secuencia Molecular , Mutación , Polisacáridos/química , Polisacáridos/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homología de Secuencia de Aminoácido , Uridina Difosfato Xilosa/metabolismo , Xilosa/química , Xilosa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA