Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
J Oncol ; 2023: 3591758, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36824664

RESUMEN

Objectives: Indoleamine 2,3-dioxygenase 1 (IDO1) acts as the key rate-limiting enzyme that converts tryptophan (Trp) to kynurenine (Kyn). Its activity was primarily induced by interferon-γ (IFN-γ), which was reported to play a role in the development of acute radiation-induced pneumonitis. In this study, we aimed to investigate the correlation between IDO1 activity and radiation-induced lung toxicity (RILT) in stage III nonsmall cell lung cancer (NSCLC) patients who were treated with chemoradiotherapy (CRT). Materials and Methods: Systemic IDO1 activity was reflected by Kyn : Trp ratio. Plasma levels of Kyn and Trp in 113 stage III NSCLC patients were measured by high-performance liquid chromatography (HPLC) before the initiation of radiotherapy. Dynamic change of IDO1 activity was followed in 23 patients before, during, and after radiotherapy. We also used RNA sequencing (RNA-seq) data from the Cancer Genome Atlas Program (TCGA) database and performed gene set enrichment analysis (GSEA) to explore how IDO1 was involved in the development of RILT. Results: 9.7% (11/113) of the whole group developed G3+ (greater than or equal to Grade 3) RILT. Preradiation IDO1 activity was significantly higher in patients who developed G3 + RILT than in nonG3 + RILT patients. (P = 0.029, AUC = 0.70). Univariate and multivariate analyses showed that high IDO1 activity was independently associated with the risk of G3 + RILT (P = 0.034). A predictive model combining both IDO1 activity and FEV1 was established for severe RILT and displayed a moderate predictive value (AUC = 0.83, P < 0.001). The incidence of G3 + RILT was 2.6% (1/38) in patients with an IDO activity ≤0.069 and FEV1 > 59.4%, and 50.0% (6/12) in those with an IDO activity >0.069 and FEV1 ≤ 59.4%. Of 23 patients with dynamic tracking, the IDO1 activity of postradiation was significantly lower than midradiation (P = 0.021), though no significant differences among the three time points were observed (P = 0.070). Bioinformatic analysis using RNA-seq data from 1014 NSCLC patients revealed that IDO mainly functioned in the inflammatory response instead of the late fibrosis process in NSCLC patients. Conclusion: High baseline IDO1 activity combined with unfavorable baseline FEV1 was predictive of severe RILT in unresectable stage III NSCLC patients. IDO1 might play a role in the acute inflammatory response. Finding effective interventions to alleviate RILT using IDO inhibitors is warranted in the future.

2.
Front Immunol ; 13: 906815, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36032151

RESUMEN

Objective: High activity of Indoleamine 2,3-dioxygenase1 (IDO1) in lung cancer patients converts tryptophan (Trp), which is the essential amino acid for T-cell metabolism, to kynurenine (Kyn) and consequently suppresses anti-tumor immune responses. We aimed to track the dynamics of IDO1 activity in stage III non-small cell lung cancer (NSCLC) patients who received first-line radiotherapy (RT) and explore its association with survival outcomes. Materials and methods: Systemic IDO1 activity was calculated by Kyn : Trp ratio. Plasma levels of Kyn and Trp in 113 thoracic RT-received stage III NSCLC patients were measured by high-performance liquid chromatography before the initiation of RT. The dynamic change of IDO1 activity was followed in 24 patients by measuring the Kyn : Trp ratio before, during, and after RT administration. Results: In 24 patients with dynamic tracking of plasma IDO1 activity, there were no significant alterations observed among the three time points (Friedman test, p = 0.13). The changing pattern of the Kyn : Trp ratio was divided into four groups: decreased consistently during RT, first increased, then decreased, increased consistently, first decreased then increased. Patients whose Kyn : Trp ratio kept decreasing or first increased then decreased were defined as the good-change group. The good-change status was identified as an independent positive factor for overall survival (OS) and progression-free survival (PFS) (p = 0.04; p = 0.01) in multivariate analysis among evaluated parameters. Patients with good change showed significantly superior local control than the bad-change group (p = 0.01, HR = 0.22). In 113 stage III NSCLC patients with pre-radiation Kyn : Trp ratio, a trend that high baseline IDO1 activity was associated with short OS was observed (p = 0.079). Conclusion: Favorable change in IDO1 activity during RT was associated with superior OS, PFS, and local control. IDO1 activity is a promising biomarker for prognosis in stage III NSCLC patients.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Quimioradioterapia , Humanos , Indolamina-Pirrol 2,3,-Dioxigenasa , Quinurenina , Triptófano
3.
J Ethnopharmacol ; 298: 115609, 2022 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-35952968

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Ginkgo biloba L. is a rare tree species unique to China. Ginkgo biloba is a traditional Chinese medicinal with a long history, acting on the heart and lung meridians, and has been reported to have a significant effect on non-small cell lung cancer. However, the mechanism underlying this metabolic effect is poorly understood. AIM OF THE STUDY: To identify the active components of Ginkgo biloba extract that may have effects on non-small cell lung cancer and their mechanisms of metabolic regulation. MATERIALS AND METHODS: In this study, LC-MS/MS was used to investigate the chemical constituents of Ginkgo biloba extract. Network pharmacology was used to identify the active components potentially valuable in the treatment of non-small cell lung cancer. Antitumor activity was evaluated using CCK-8 and apoptosis assays. The mechanisms of metabolic regulation by the active components were further explored using untargeted metabolomics, targeted metabolomics, and western blot experiments. RESULTS: Network pharmacology and component analysis of Ginkgo biloba extract identified four ginkgolides that significantly affect non-small cell lung cancer. Their antiproliferative activity in A549 cells was evaluated using CCK-8 and apoptosis assays. The metabolomics results indicated that the ginkgolides had a significant regulatory effect on metabolic pathways related to one-carbon metabolisms, such as purine metabolism, glutathione metabolism, and the methionine cycle. Further targeted metabolomics analysis on one-carbon metabolism found that the ginkgolides may significantly affect the content of multiple metabolites in A549 cells, including purine, S-adenyl methionine, S-adenylyl homocysteine, and glutathione upregulated, and adenosine, tetrahydrofolate, and 10-Formyl-tetrahydrofolate significantly decreased. Notably, dihydrofolate reductase (DHFR) and methylenetetrahydrofolate dehydrogenases (MTHFR) were found to be altered after the treatment of ginkgolides. CONCLUSION: This in vitro study indicated that ginkgolides might inhibit the growth of A549 cells by targeting one-carbon metabolism. This study also demonstrated that metabolomics combined with network pharmacology is a powerful tool for identifying traditional Chinese medicines' active components and metabolic mechanisms.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Carbono , Cromatografía Liquida , Ginkgo biloba/química , Ginkgólidos/farmacología , Glutatión , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Metabolómica/métodos , Metionina , Farmacología en Red , Purinas , Espectrometría de Masas en Tándem , Tetrahidrofolatos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA