Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 97
Filtrar
2.
Nat Commun ; 15(1): 5689, 2024 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-38971796

RESUMEN

Leukemia is a kind of hematological malignancy originating from bone marrow, which provides essential signals for initiation, progression, and recurrence of leukemia. However, how to specifically deliver drugs to the bone marrow remains elusive. Here, we develop biomimetic vesicles by infusing hematopoietic stem and progenitor cell (HSPC) membrane with liposomes (HSPC liposomes), which migrate to the bone marrow of leukemic mice via hyaluronic acid-CD44 axis. Moreover, the biomimetic vesicles exhibit superior binding affinity to leukemia cells through intercellular cell adhesion molecule-1 (ICAM-1)/integrin ß2 (ITGB2) interaction. Further experiments validate that the vesicles carrying chemotherapy drug cytarabine (Ara-C@HSPC-Lipo) markedly inhibit proliferation, induce apoptosis and differentiation of leukemia cells, and decrease number of leukemia stem cells. Mechanically, RNA-seq reveals that Ara-C@HSPC-Lipo treatment induces apoptosis and differentiation and inhibits the oncogenic pathways. Finally, we verify that HSPC liposomes are safe in mice. This study provides a method for targeting bone marrow and treating leukemia.


Asunto(s)
Apoptosis , Médula Ósea , Citarabina , Sistemas de Liberación de Medicamentos , Células Madre Hematopoyéticas , Leucemia , Liposomas , Animales , Células Madre Hematopoyéticas/efectos de los fármacos , Células Madre Hematopoyéticas/metabolismo , Ratones , Citarabina/farmacología , Médula Ósea/efectos de los fármacos , Médula Ósea/patología , Médula Ósea/metabolismo , Apoptosis/efectos de los fármacos , Leucemia/tratamiento farmacológico , Leucemia/patología , Humanos , Diferenciación Celular/efectos de los fármacos , Membrana Celular/metabolismo , Membrana Celular/efectos de los fármacos , Línea Celular Tumoral , Antígenos CD18/metabolismo , Proliferación Celular/efectos de los fármacos , Receptores de Hialuranos/metabolismo , Ácido Hialurónico/química , Células Madre Neoplásicas/efectos de los fármacos , Células Madre Neoplásicas/patología , Células Madre Neoplásicas/metabolismo
3.
Blood Sci ; 6(4): e00200, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39027904

RESUMEN

Accumulated evidence emerges that dynamic changes in human gut microbiota and microbial metabolites can alter the ecological balance of symbiotic hosts. The gut microbiota plays a role in various diseases through different mechanisms. More and more attention has been paid to the effects that human microbiota extends beyond the gut. This review summarized the current understanding of the roles that gut microbiota plays in hematopoietic regulation and the occurrence and development of benign and malignant hematologic diseases. The progress of the application of microbiota in treatment was discussed in order to provide new insights into clinical diagnosis and treatment in the future.

4.
Nat Aging ; 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39020094

RESUMEN

Aging of hematopoietic stem cells (HSCs) is accompanied by impaired self-renewal ability, myeloid skewing, immunodeficiencies and increased susceptibility to malignancies. Although previous studies highlighted the pivotal roles of individual metabolites in hematopoiesis, comprehensive and high-resolution metabolomic profiles of different hematopoietic cells across ages are still lacking. In this study, we created a metabolome atlas of different blood cells across ages in mice. We reveal here that purine, pyrimidine and retinol metabolism are enriched in young hematopoietic stem and progenitor cells (HSPCs), whereas glutamate and sphingolipid metabolism are concentrated in aged HSPCs. Through metabolic screening, we identified uridine as a potential regulator to rejuvenate aged HSPCs. Mechanistically, uridine treatment upregulates the FoxO signaling pathway and enhances self-renewal while suppressing inflammation in aged HSCs. Finally, we constructed an open-source platform for public easy access and metabolomic analysis in blood cells. Collectively, we provide a resource for metabolic studies in hematopoiesis that can contribute to future anti-aging metabolite screening.

5.
Cancer Res ; 84(13): 2090-2108, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-39082681

RESUMEN

Acute myeloid leukemia (AML) is an aggressive and heterogeneous hematologic malignancy. In elderly patients, AML incidence is high and has a poor prognosis due to a lack of effective therapies. G protein-coupled receptors (GPCR) play integral roles in physiologic processes and human diseases. Particularly, one third of adhesion GPCRs, the second largest group of GPCRs, are highly expressed in hematopoietic stem and progenitor cells or lineage cells. Here, we investigate the role of adhesion GPCRs in AML and whether they could be harnessed as antileukemia targets. Systematic screening of the impact of adhesion GPCRs on AML functionality by bioinformatic and functional analyses revealed high expression of ADGRE2 in AML, particularly in leukemic stem cells, which is associated with poor patient outcomes. Silencing ADGRE2 not only exerts antileukemic effects in AML cell lines and cells derived from patients with AML in vitro, but also delays AML progression in xenograft models in vivo. Mechanistically, ADGRE2 activates phospholipase Cß/protein kinase C/MEK/ERK signaling to enhance the expression of AP1 and transcriptionally drive the expression of DUSP1, a protein phosphatase. DUSP1 dephosphorylates Ser16 in the J-domain of the co-chaperone DNAJB1, which facilitates the DNAJB1-HSP70 interaction and maintenance of proteostasis in AML. Finally, combined inhibition of MEK, AP1, and DUSP1 exhibits robust therapeutic efficacy in AML xenograft mouse models. Collectively, this study deciphers the roles and mechanisms of ADGRE2 in AML and provides a promising therapeutic strategy for treating AML. Significance: Increased expression of the adhesion GPCR member ADGRE2 in AML supports leukemia stem cell self-renewal and leukemogenesis by modulating proteostasis via an MEK/AP1/DUSP1 axis, which can be targeted to suppress AML progression.


Asunto(s)
Leucemia Mieloide Aguda , Receptores Acoplados a Proteínas G , Animales , Humanos , Ratones , Línea Celular Tumoral , Proliferación Celular , Progresión de la Enfermedad , Leucemia Mieloide Aguda/patología , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/genética , Ratones Endogámicos NOD , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Proteostasis , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/genética , Ensayos Antitumor por Modelo de Xenoinjerto
6.
Nat Cell Biol ; 26(6): 946-961, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38745030

RESUMEN

RNA-binding proteins (RBPs) are pivotal in acute myeloid leukaemia (AML), a lethal disease. Although specific phase separation-competent RBPs are recognized in AML, the effect of their condensate formation on AML leukaemogenesis, and the therapeutic potential of inhibition of phase separation are underexplored. In our in vivo CRISPR RBP screen, fibrillarin (FBL) emerges as a crucial nucleolar protein that regulates AML cell survival, primarily through its phase separation domains rather than methyltransferase or acetylation domains. These phase separation domains, with specific features, coordinately drive nucleoli formation and early processing of pre-rRNA (including efflux, cleavage and methylation), eventually enhancing the translation of oncogenes such as MYC. Targeting the phase separation capability of FBL with CGX-635 leads to elimination of AML cells, suggesting an additional mechanism of action for CGX-635 that complements its established therapeutic effects. We highlight the potential of PS modulation of critical proteins as a possible therapeutic strategy for AML.


Asunto(s)
Proteínas Cromosómicas no Histona , Leucemia Mieloide Aguda , Precursores del ARN , Procesamiento Postranscripcional del ARN , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patología , Leucemia Mieloide Aguda/metabolismo , Precursores del ARN/metabolismo , Precursores del ARN/genética , Proteínas Cromosómicas no Histona/metabolismo , Proteínas Cromosómicas no Histona/genética , Animales , Línea Celular Tumoral , Biosíntesis de Proteínas , Nucléolo Celular/metabolismo , Nucléolo Celular/genética , Ratones , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/genética , Regulación Leucémica de la Expresión Génica , Separación de Fases
7.
Cell Rep ; 43(4): 114065, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38578828

RESUMEN

Epigenetic modification shapes differentiation trajectory and regulates the exhaustion state of chimeric antigen receptor T (CAR-T) cells. Limited efficacy induced by terminal exhaustion closely ties with intrinsic transcriptional regulation. However, the comprehensive regulatory mechanisms remain largely elusive. Here, we identify class I histone deacetylase inhibitors (HDACi) as boosters of CAR-T cell function by high-throughput screening of chromatin-modifying drugs, in which M344 and chidamide enhance memory maintenance and resistance to exhaustion of CAR-T cells that induce sustained antitumor efficacy both in vitro and in vivo. Mechanistically, HDACi decrease HDAC1 expression and enhance H3K27ac activity. Multi-omics analyses from RNA-seq, ATAC-seq, and H3K27ac CUT&Tag-seq show that HDACi upregulate expression of TCF4, LEF1, and CTNNB1, which subsequently activate the canonical Wnt/ß-catenin pathway. Collectively, our findings elucidate the functional roles of class I HDACi in enhancing CAR-T cell function, which provides the basis and therapeutic targets for synergic combination of CAR-T cell therapy and HDACi treatment.


Asunto(s)
Aminopiridinas , Inhibidores de Histona Desacetilasas , Vía de Señalización Wnt , Inhibidores de Histona Desacetilasas/farmacología , Vía de Señalización Wnt/efectos de los fármacos , Animales , Humanos , Ratones , Benzamidas/farmacología , Línea Celular Tumoral , Inmunoterapia Adoptiva/métodos , Receptores Quiméricos de Antígenos/metabolismo , Linfocitos T/efectos de los fármacos , Linfocitos T/metabolismo , Linfocitos T/inmunología , Histona Desacetilasa 1/metabolismo
8.
Blood ; 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38657191

RESUMEN

Hematopoietic differentiation is controlled by intrinsic regulators and the extrinsic hematopoietic niche. Activating transcription factor 4 (ATF4) plays a crucial role in the function of fetal and adult hematopoietic stem cell maintenance; however, the precise function of ATF4 in the bone marrow niche and the mechanism by which ATF4 regulates adult hematopoiesis remain largely unknown. Here, we employ four cell-type-specific mouse Cre lines to achieve conditional knockout of Atf4 in Cdh5+ endothelial cells, Prx1+ bone marrow stromal cells, Osx+ osteo-progenitor cells, and Mx1+ hematopoietic cells, and uncover the role of Atf4 in niche cells and hematopoiesis. Intriguingly, depletion of Atf4 in niche cells does not affect hematopoiesis; however, Atf4-deficient hematopoietic cells exhibit erythroid differentiation defects, leading to hypoplastic anemia. Mechanistically, ATF4 mediates direct regulation of Rps19bp1 transcription, which is, in turn, involved in 40S ribosomal subunit assembly to coordinate ribosome biogenesis and promote erythropoiesis. Finally, we demonstrate that under conditions of 5-fluorouracil-induced stress, Atf4 depletion impedes the recovery of hematopoietic lineages, which requires efficient ribosome biogenesis. Taken together, our findings highlight the indispensable role of the ATF4-RPS19BP1 axis in the regulation of erythropoiesis.

9.
Cell Discov ; 10(1): 35, 2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38548771

RESUMEN

Microplastics (MPs) are contaminants ubiquitously found in the global biosphere that enter the body through inhalation or ingestion, posing significant risks to human health. Recent studies emerge that MPs are present in the bone marrow and damage the hematopoietic system. However, it remains largely elusive about the specific mechanisms by which MPs affect hematopoietic stem cells (HSCs) and their clinical relevance in HSC transplantation (HSCT). Here, we established a long-term MPs intake mouse model and found that MPs caused severe damage to the hematopoietic system. Oral gavage administration of MPs or fecal transplantation of microbiota from MPs-treated mice markedly undermined the self-renewal and reconstitution capacities of HSCs. Mechanistically, MPs did not directly kill HSCs but disrupted gut structure and permeability, which eventually ameliorated the abundance of Rikenellaceae and hypoxanthine in the intestine and inactivated the HPRT-Wnt signaling in bone marrow HSCs. Furthermore, administration of Rikenellaceae or hypoxanthine in mice as well as treatment of WNT10A in the culture system substantially rescued the MPs-induced HSC defects. Finally, we validated in a cohort of human patients receiving allogenic HSCT from healthy donors, and revealed that the survival time of patients was negatively correlated with levels of MPs, while positively with the abundance of Rikenellaceae, and hypoxanthine in the HSC donors' feces and blood. Overall, our study unleashes the detrimental roles and mechanisms of MPs in HSCs, which provides potential strategies to prevent hematopoietic damage from MPs and serves as a fundamental critique for selecting suitable donors for HSCT in clinical practice.

10.
Cell Rep Med ; 5(2): 101400, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38307031

RESUMEN

Chimeric antigen receptor (CAR)-T therapy has shown superior efficacy against hematopoietic malignancies. However, many patients failed to achieve sustainable tumor control partially due to CAR-T cell exhaustion and limited persistence. In this study, by performing single-cell multi-omics data analysis on patient-derived CAR-T cells, we identify CD38 as a potential hallmark of exhausted CAR-T cells, which is positively correlated with exhaustion-related transcription factors and further confirmed with in vitro exhaustion models. Moreover, inhibiting CD38 activity reverses tonic signaling- or tumor antigen-induced exhaustion independent of single-chain variable fragment design or costimulatory domain, resulting in improved CAR-T cell cytotoxicity and antitumor response. Mechanistically, CD38 inhibition synergizes the downregulation of CD38-cADPR -Ca2+ signaling and activation of the CD38-NAD+-SIRT1 axis to suppress glycolysis. Collectively, our findings shed light on the role of CD38 in CAR-T cell exhaustion and suggest potential clinical applications of CD38 inhibition in enhancing the efficacy and persistence of CAR-T cell therapy.


Asunto(s)
Neoplasias , Anticuerpos de Cadena Única , Humanos , Linfocitos T , Inmunoterapia Adoptiva/métodos , Antígenos de Neoplasias/metabolismo
11.
iScience ; 27(3): 109126, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38405615

RESUMEN

Aging is considered a critical factor of poor prognosis in allogenic hemopoietic stem cell transplantation (allo-HSCT). To elucidate the underlying mechanisms, we comprehensively reintegrated our clinical data from patients after allo-HSCT and public single-cell transcriptomic profile from post-allo-HSCT and healthy individuals, demonstrating that old donors were more prone to acute GVHD (aGVHD) with pronounced inflammation accumulation and worse overall survival (OS). We also found the presence of inflammation-related CXCL2+ HSC subpopulation during aging with significantly enriched pro-inflammatory pathways. Shifting attention to the HSC microenvironment, we deciphered that IL-1/IL-6 and TRAIL (i.e., TNFSF10) ligand‒receptor pair serves as the crucial bridge between CD14/CD16 monocytes and hematopoietic stem/progenitor cells (HSPCs). The profound upregulation of these signaling pathways during aging finally causes HSC dysfunction and lineage-biased differentiation. Our findings provide the theoretical basis for achieving tailored GVHD management and enhancing allo-HSCT regimens efficacy for aged donors.

12.
Nat Commun ; 15(1): 226, 2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38172511

RESUMEN

Hematopoietic stem and progenitor cells generate all the lineages of blood cells throughout the lifespan of vertebrates. The emergence of hematopoietic stem and progenitor cells is finely tuned by a variety of signaling pathways. Previous studies have revealed the roles of pattern-recognition receptors such as Toll-like receptors and RIG-I-like receptors in hematopoiesis. In this study, we find that Nlrc3, a nucleotide-binding domain leucine-rich repeat containing family gene, is highly expressed in hematopoietic differentiation stages in vivo and vitro and is required in hematopoiesis in zebrafish. Mechanistically, nlrc3 activates the Notch pathway and the downstream gene of Notch hey1. Furthermore, NF-kB signaling acts upstream of nlrc3 to enhance its transcriptional activity. Finally, we find that Nlrc3 signaling is conserved in the regulation of murine embryonic hematopoiesis. Taken together, our findings uncover an indispensable role of Nlrc3 signaling in hematopoietic stem and progenitor cell emergence and provide insights into inflammation-related hematopoietic ontogeny and the in vitro expansion of hematopoietic stem and progenitor cells.


Asunto(s)
Células Madre Hematopoyéticas , Pez Cebra , Animales , Ratones , Diferenciación Celular/genética , Células Madre Hematopoyéticas/metabolismo , Hematopoyesis/genética , Transducción de Señal , Receptores Notch/metabolismo
13.
Exp Hematol Oncol ; 13(1): 12, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38291542

RESUMEN

Leukemias are refractory hematological malignancies, characterized by marked intrinsic heterogeneity which poses significant obstacles to effective treatment. However, traditional bulk sequencing techniques have not been able to effectively unravel the heterogeneity among individual tumor cells. With the emergence of single-cell sequencing technology, it has bestowed upon us an unprecedented resolution to comprehend the mechanisms underlying leukemogenesis and drug resistance across various levels, including the genome, epigenome, transcriptome and proteome. Here, we provide an overview of the currently prevalent single-cell sequencing technologies and a detailed summary of single-cell studies conducted on leukemia, with a specific focus on four key aspects: (1) leukemia's clonal architecture, (2) frameworks to determine leukemia subtypes, (3) tumor microenvironment (TME) and (4) the drug-resistant mechanisms of leukemia. This review provides a comprehensive summary of current single-cell studies on leukemia and highlights the markers and mechanisms that show promising clinical implications for the diagnosis and treatment of leukemia.

14.
World J Gastroenterol ; 30(1): 34-49, 2024 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-38293325

RESUMEN

Crohn's disease (CD) is caused by immune, environmental, and genetic factors. It can involve the entire gastrointestinal tract, and although its prevalence is rapidly increasing its etiology remains unclear. Emerging biological and small-molecule drugs have advanced the treatment of CD; however, a considerable proportion of patients are non-responsive to all known drugs. To achieve a breakthrough in this field, innovations that could guide the further development of effective therapies are of utmost urgency. In this review, we first propose the innovative concept of pan-lymphatic dysfunction for the general distribution of lymphatic dysfunction in various diseases, and suggest that CD is the intestinal manifestation of pan-lymphatic dysfunction based on basic and clinical preliminary data. The supporting evidence is fully summarized, including the existence of lymphatic system dysfunction, recognition of the inside-out model, disorders of immune cells, changes in cell plasticity, partial overlap of the underlying mechanisms, and common gut-derived fatty and bile acid metabolism. Another benefit of this novel concept is that it proposes adopting the zebrafish model for studying intestinal diseases, especially CD, as this model is good at presenting and mimicking lymphatic dysfunction. More importantly, the ensuing focus on improving lymphatic function may lead to novel and promising therapeutic strategies for CD.


Asunto(s)
Enfermedad de Crohn , Vasos Linfáticos , Humanos , Animales , Enfermedad de Crohn/complicaciones , Enfermedad de Crohn/diagnóstico , Enfermedad de Crohn/tratamiento farmacológico , Pez Cebra , Sistema Linfático
15.
Cell Metab ; 36(1): 176-192.e10, 2024 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-38171332

RESUMEN

The efficacy of chimeric antigen receptor (CAR) T cell therapy is hampered by relapse in hematologic malignancies and by hyporesponsiveness in solid tumors. Long-lived memory CAR T cells are critical for improving tumor clearance and long-term protection. However, during rapid ex vivo expansion or in vivo tumor eradication, metabolic shifts and inhibitory signals lead to terminal differentiation and exhaustion of CAR T cells. Through a mitochondria-related compound screening, we find that the FDA-approved isocitrate dehydrogenase 2 (IDH2) inhibitor enasidenib enhances memory CAR T cell formation and sustains anti-leukemic cytotoxicity in vivo. Mechanistically, IDH2 impedes metabolic fitness of CAR T cells by restraining glucose utilization via the pentose phosphate pathway, which alleviates oxidative stress, particularly in nutrient-restricted conditions. In addition, IDH2 limits cytosolic acetyl-CoA levels to prevent histone acetylation that promotes memory cell formation. In combination with pharmacological IDH2 inhibition, CAR T cell therapy is demonstrated to have superior efficacy in a pre-clinical model.


Asunto(s)
Antioxidantes , Neoplasias , Humanos , Antioxidantes/farmacología , Antioxidantes/metabolismo , Isocitrato Deshidrogenasa , Histonas/metabolismo , Acetilación , Linfocitos T , Neoplasias/metabolismo , Mitocondrias/metabolismo
16.
Hepatology ; 79(1): 167-182, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-37368993

RESUMEN

BACKGROUND AND AIMS: Chronic hepatitis B (CHB) is caused by HBV infection and affects the lives of millions of people worldwide by causing liver inflammation, cirrhosis, and liver cancer. Interferon-alpha (IFN-α) therapy is a conventional immunotherapy that has been widely used in CHB treatment and achieved promising therapeutic outcomes by activating viral sensors and interferon-stimulated genes (ISGs) suppressed by HBV. However, the longitudinal landscape of immune cells of CHB patients and the effect of IFN-α on the immune system are not fully understood. APPROACH AND RESULTS: Here, we applied single-cell RNA sequencing (scRNA-seq) to delineate the transcriptomic landscape of peripheral immune cells in CHB patients before and after PegIFN-α therapy. Notably, we identified three CHB-specific cell subsets, pro-inflammatory (Pro-infla) CD14+ monocytes, Pro-infla CD16+ monocytes and IFNG+ CX3CR1- NK cells, which highly expressed proinflammatory genes and positively correlated with HBsAg. Furthermore, PegIFN-α treatment attenuated percentages of hyperactivated monocytes, increased ratios of long-lived naive/memory T cells and enhanced effector T cell cytotoxicity. Finally, PegIFN-α treatment switched the transcriptional profiles of entire immune cells from TNF-driven to IFN-α-driven pattern and enhanced innate antiviral response, including virus sensing and antigen presentation. CONCLUSIONS: Collectively, our study expands the understanding of the pathological characteristics of CHB and the immunoregulatory roles of PegIFN-α, which provides a new powerful reference for the clinical diagnosis and treatment of CHB.


Asunto(s)
Hepatitis B Crónica , Humanos , Antivirales , Interferón-alfa , Transcriptoma , Análisis de Secuencia de ARN , Virus de la Hepatitis B , Antígenos de Superficie de la Hepatitis B , Antígenos e de la Hepatitis B , ADN Viral
18.
Cell Regen ; 12(1): 31, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37656237

RESUMEN

Human pluripotent stem cells (hPSCs) have been suggested as a potential source for the production of blood cells for clinical application. In two decades, almost all types of blood cells can be successfully generated from hPSCs through various differentiated strategies. Meanwhile, with a deeper understanding of hematopoiesis, higher efficiency of generating progenitors and precursors of blood cells from hPSCs is achieved. However, how to generate large-scale mature functional cells from hPSCs for clinical use is still difficult. In this review, we summarized recent approaches that generated both hematopoietic stem cells and mature lineage cells from hPSCs, and remarked their efficiency and mechanisms in producing mature functional cells. We also discussed the major challenges in hPSC-derived products of blood cells and provided some potential solutions. Our review summarized efficient, simple, and defined methodologies for developing good manufacturing practice standards for hPSC-derived blood cells, which will facilitate the translation of these products into the clinic.

19.
J Hematol Oncol ; 16(1): 65, 2023 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-37353849

RESUMEN

Hematologic malignancies (HMs) pose a serious threat to patients' health and life, and the five-year overall survival of HMs remains low. The lack of understanding of the pathogenesis and the complex clinical symptoms brings immense challenges to the diagnosis and treatment of HMs. Traditional therapeutic strategies for HMs include radiotherapy, chemotherapy, targeted therapy and hematopoietic stem cell transplantation. Although immunotherapy and cell therapy have made considerable progress in the last decade, nearly half of patients still relapse or suffer from drug resistance. Recently, studies have emerged that nanomaterials, nanotechnology and nanomedicine show great promise in cancer therapy by enhancing drug targeting, reducing toxicity and side effects and boosting the immune response to promote durable immunological memory. In this review, we summarized the strategies of recently developed nanomaterials, nanotechnology and nanomedicines against HMs and then proposed emerging strategies for the future designment of nanomedicines to treat HMs based on urgent clinical needs and technological progress.


Asunto(s)
Neoplasias Hematológicas , Nanoestructuras , Neoplasias , Humanos , Nanomedicina , Recurrencia Local de Neoplasia/tratamiento farmacológico , Nanotecnología , Nanoestructuras/uso terapéutico , Sistemas de Liberación de Medicamentos , Neoplasias Hematológicas/tratamiento farmacológico , Neoplasias/terapia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA