Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 285
Filtrar
1.
J Phys Chem A ; 2024 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-39315480

RESUMEN

The investigation into the interfacial properties between fullerene compounds and Sn-based perovskites (Sn-PVSK) holds extraordinary significance for advancing efficient and stable Pb-free perovskite solar cells. This study is the first theoretical exploration to examine their interfacial properties using Ab initio molecular dynamics (AIMD) simulations and trajectory analysis methods with C60@FASnI3 as a representative system. The impact of surface termination and FA+ rotation on interface stability has been assessed. Within the 10 ps AIMD simulations, the C60@FAI interface demonstrates greater stability compared to the C60@SnI interface due to the robustness of the single-bonded I on the FAI termination and weaker C60-FAI interactions. The C60@SnI interface has poor stability, but it can be enhanced by controlling the FA+ rotation, achieving optimal stability at a 45° rotation along the C-H bond axis. This is attributed to minimal hydrogen bond interactions and a reduced steric hindrance. This work not only substantiates the pivotal role of surface termination in maintaining interface stability but, most importantly, also reveals how FA+ rotational dynamics regulate the C60@SnI interface stability, providing valuable insights for further improving the efficiency of Sn-PVSK solar cells.

2.
Acad Radiol ; 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39232912

RESUMEN

RATIONALE AND OBJECTIVES: To construct a model using radiomics features based on ultrasound images and evaluate the feasibility of noninvasive assessment of lymph node status in endometrial cancer (EC) patients. METHODS: In this multicenter retrospective study, a total of 186 EC patients who underwent hysterectomy and lymph node dissection were included, Pathology confirmed the presence or absence of lymph node metastasis (LNM). The study encompassed patients from seven centers, spanning from September 2018 to November 2023, with 93 patients in each group (with or without LNM). Extracted ultrasound radiomics features from transvaginal ultrasound images, used five machine learning (ML) algorithms to establish US radiomics models, screened clinical features through univariate and multivariate logistic regression to establish a clinical model, and combined clinical and radiomics features to establish a nomogram model. The diagnostic ability of the three models for LNM with EC was compared, and the diagnostic performance and accuracy of the three models were evaluated using receiver operating characteristic curve analysis. RESULTS: Among the five ML models, the XGBoost model performed the best, with AUC values of 0.900 (95% CI, 0.847-0.950) and 0.865 (95% CI, 0.763-0.950) for the training and testing sets, respectively. In the final model, the nomogram based on clinical features and the ultrasound radiomics showed good resolution, with AUC values of 0.919 (95% CI, 0.874-0.964) and 0.884 (0.801-0.967) in the training and testing sets, respectively. The decision curve analysis verified the clinical practicality of the nomogram. CONCLUSION: The ML model based on ultrasound radiomics has potential value in the noninvasive differential diagnosis of LNM in patients with EC. The nomogram constructed by combining ultrasound radiomics and clinical features can provide clinical doctors with more comprehensive and personalized image information, which is highly important for selecting treatment strategies.

3.
Small ; : e2405193, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39252656

RESUMEN

Surface-enhanced Raman scattering (SERS) is widely used in all kinds of detection due to its ultrahigh sensitivity and selectivity. Micromotors, when used as SERS sensors, or the so-called "hotspots on the fly", can combine both controlled mobility and SERS sensing capacity, and are ideal for versatile in situ detection. In this work, mobile SERS sensors are successfully fabricated by growing gold nanospikes onto magnetic microsphere surfaces. These mobile micromotors can act as normal SERS sensors, characterized by the trace detection of thiram, a highly toxic fungicide. The detection limit can reach 0.1 nM, as good as most other noble metal deposited substrates. With significant magnetic gradient forces, separation of pathogenic bacteria from bulk solution is achieved once these magnetic micromotors bind with bacterial cells. Manipulated propulsion of micromotors, on the other hand, enables them to approach and contact pathogenic bacterial cells on command and further acquire Raman spectra under a controlled degree of contact, a capability never seen with passive sensors. The robotic SERS sensors have demonstrated unique sensing characteristics with controlled manipulations along with discriminative detection between bacterial species.

4.
Chem Sci ; 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39139736

RESUMEN

There exists an interplay between borane and a Lewis base in their adducts. However, studies on these adducts so far have mainly focused on the different reactions of B-H bonds with limited attention given to the influence of borane on the chemistry of the Lewis base, except for BF3 and BAr3. Herein, we have synthesized novel borane adducts with pyridine derivatives, Py·B3H7, in which the coordination of B3H7 efficiently achieved the intra-molecular charge transfer. The strong B-N bond in these adducts resulted in the formation of stable dearomatic intermediates of pyridine derivatives, confirmed by 1H and 11B NMR spectroscopy, from which different reactions have transpired to realize C(sp3)-H and C(sp2)-H functionalization under mild conditions. The B3H7 pyridine derivatives are stable and do not dissociate or decompose during the reaction process. The high stability of the B-N bond makes this method a good option for boron-containing drugs with potential for use in boron neutron capture therapy (BNCT).

5.
J Multidiscip Healthc ; 17: 3743-3751, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39104383

RESUMEN

Objective: Sarcopenia is more common in maintenance hemodialysis (MHD) patients, and the aim of this study is to analyze the risk factors associated with sarcopenia in MHD patients, along with its correlation to emotional status and quality of life. Methods: This is a cross-sectional cohort study. A total of 111 MHD patients who were treated in the Department of Nephrology of our hospital were selected as the study subjects by convenience sampling. The quality of life and emotional status were evaluated by health survey scale (SF-36), self-rating anxiety scale (SAS) and self-rating depression scale (SDS). Regression analysis was used to explore the influencing factors of sarcopenia. Correlation analysis was used to investigate the correlation between sarcopenia and quality of life and emotional status. Results: The prevalence of sarcopenia was 59.8%. The results showed that age, gender, body mass index (BMI), dialysis time, economic status, marital status and pre-dialysis creatinine were significant factors affecting the development of sarcopenia in hemodialysis patients (p<0.05). The SF-36 total score was significantly lower in the sarcopenia group (72.05±12.28 vs 78.03±10.55) than in the non-sarcopenia group, but the anxiety scale score (52.97±4.67 vs 36.2±3.36) and depression scale score (57.67±4.58 vs 38.71±3.77) were significantly higher than those in the non-sarcopenia group (p< 0.001). Correlation analysis showed that sarcopenia was positively correlated with SAS and SDS scores and negatively correlated with SF-36 total score (p < 0.05). Conclusion: The risk of sarcopenia was higher among MHD patients who were older, male, single, with a longer MHD duration, lower economic status, lower BMI, comorbid diabetes and lower levels of creatinine.

6.
Ann Neurol ; 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38979912

RESUMEN

OBJECTIVE: Most paroxysmal kinesigenic dyskinesia (PKD) cases are hereditary, yet approximately 60% of patients remain genetically undiagnosed. We undertook the present study to uncover the genetic basis for undiagnosed PKD patients. METHODS: Whole-exome sequencing was performed for 106 PRRT2-negative PKD probands. The functional impact of the genetic variants was investigated in HEK293T cells and Drosophila. RESULTS: Heterozygous variants in KCNJ10 were identified in 11 individuals from 8 unrelated families, which accounted for 7.5% (8/106) of the PRRT2-negative probands. Both co-segregation of the identified variants and the significantly higher frequency of rare KCNJ10 variants in PKD cases supported impacts from the detected KCNJ10 heterozygous variants on PKD pathogenesis. Moreover, a KCNJ10 mutation-carrying father from a typical EAST/SeSAME family was identified as a PKD patient. All patients manifested dystonia attacks triggered by sudden movement with a short episodic duration. Patch-clamp recordings in HEK293T cells revealed apparent reductions in K+ currents of the patient-derived variants, indicating a loss-of-function. In Drosophila, milder hyperexcitability phenotypes were observed in heterozygous Irk2 knock-in flies compared to homozygotes, supporting haploinsufficiency as the mechanism for the detected heterozygous variants. Electrophysiological recordings showed that excitatory neurons in Irk2 haploinsufficiency flies exhibited increased excitability, and glia-specific complementation with human Kir4.1 rescued the Irk2 mutant phenotypes. INTERPRETATION: Our study established haploinsufficiency resulting from heterozygous variants in KCNJ10 can be understood as a previously unrecognized genetic cause for PKD and provided evidence of glial involvement in the pathophysiology of PKD. ANN NEUROL 2024.

7.
Small ; : e2403254, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38845466

RESUMEN

Incorporating acoustic and mechanical properties into a single multifunctional structure has attracted considerable attention in engineering. However, effectively integrating these sound absorption properties and damage resistance to achieve multifunctional structural designs remains a great challenge due to imperfect design methods. In this study, the inherent mechanical properties of turtle shells by introducing dissipative pores are leveraged to present a lattice structure that possesses both excellent sound-absorg and high damage-resistant characteristics. To achieve acoustic optimization design, a universal high-fidelity neural network correction model is proposed to address the impedance calculation challenge in complex structures. Building upon this foundation, a multi-cell combination design enables to achieve high absorption through optimization with a low thickness of 50 mm, resulting in average sound absorption coefficients reaching 0.88 and 0.93 within the frequency ranges of 300-600 Hz and 500-1000 Hz, respectively. It is also found that the optimized structures exhibit exceptional damage resistance under varying relative densities via the coupling effect of the shell thickness on the acoustic and mechanical properties. Overall, this work introduces a novel paradigm for designing intricate multifunctional structures with acoustic and mechanical properties while providing valuable inspiration for future research on multifunctional structure design.

8.
Materials (Basel) ; 17(10)2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38793435

RESUMEN

Research has established that the incorporation of 3D-printed lattice structures in cement substrates enhances the mechanical properties of cementitious materials. However, given that 3D-printing materials, notably polymers, exhibit varying degrees of mechanical performance under high-temperature conditions, their efficacy is compromised. Notably, at temperatures reaching 150 °C, these materials soften and lose their load-bearing capacity, necessitating further investigation into their compressive mechanical behavior in such environments. This study evaluates the compressibility of cement materials reinforced with lattice structures made from polyamide 6 (PA6) across different structural configurations and ambient temperatures, employing ABAQUS for simulation. Six distinct 3D-printed lattice designs with equivalent volume but varying configurations were tested under ambient temperatures of 20 °C, 50 °C, and 100 °C to assess their impact on compressive properties. The findings indicate that heightened ambient temperatures significantly diminish the reinforcing effect of 3D-printed materials on the properties of cement-based composites.

9.
Bioresour Bioprocess ; 11(1): 48, 2024 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-38735884

RESUMEN

BACKGROUND: Formolase (FLS) is a computationally designed enzyme that catalyzes the carboligation of two or three C1 formaldehyde molecules into C2 glycolaldehyde or C3 dihydroxyacetone (DHA). FLS lays the foundation for several artificial carbon fixation and valorization pathways, such as the artificial starch anabolic pathway. However, the application of FLS is limited by its low catalytic activity and product promiscuity. FINDINGS: FLS, designed and engineered based on benzoylformate decarboxylase from Pseudomonas putida, was selected as a candidate for modification. To evaluate its catalytic activity, 25 residues located within an 8 Å distance from the active center were screened using single-point saturation mutagenesis. A screening approach based on the color reaction of the DHA product was applied to identify the desired FLS variants. After screening approximately 5,000 variants (approximately 200 transformants per site), several amino acid sites that were not identified by directed evolution were found to improve DHA formation. The serine-to-phenylalanine substitution at position 236 improved the activity towards DHA formation by 7.6-fold. Molecular dynamics simulations suggested that the mutation increased local hydrophobicity at the active site, predisposing the cofactor-C2 intermediate to nucleophilic attack by the third formaldehyde molecule for subsequent DHA generation. CONCLUSIONS: This study provides improved FLS variants and valuable information into the influence of residues adjacent to the active center affecting catalytic efficiency, which can guide the rational engineering or directed evolution of FLS to optimize its performance in artificial carbon fixation and valorization.

10.
J Med Radiat Sci ; 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38777346

RESUMEN

INTRODUCTION: This study aimed to evaluate the accuracy of our own artificial intelligence (AI)-generated model to assess automated segmentation and quantification of body composition-derived computed tomography (CT) slices from the lumber (L3) region in colorectal cancer (CRC) patients. METHODS: A total of 541 axial CT slices at the L3 vertebra were retrospectively collected from 319 patients with CRC diagnosed during 2012-2019 at a single Australian tertiary institution, Western Health in Melbourne. A two-dimensional U-Net convolutional network was trained on 338 slices to segment muscle, visceral adipose tissue (VAT) and subcutaneous adipose tissue (SAT). Manual reading of these same slices of muscle, VAT and SAT was created to serve as ground truth data. The Dice similarity coefficient was used to assess the U-Net-based segmentation performance on both a validation dataset (68 slices) and a test dataset (203 slices). The measurement of cross-sectional area and Hounsfield unit (HU) density of muscle, VAT and SAT were compared between two methods. RESULTS: The segmentation for muscle, VAT and SAT demonstrated excellent performance for both the validation (Dice similarity coefficients >0.98, respectively) and test (Dice similarity coefficients >0.97, respectively) datasets. There was a strong positive correlation between manual and AI segmentation measurements of body composition for both datasets (Spearman's correlation coefficients: 0.944-0.999, P < 0.001). CONCLUSIONS: Compared to the gold standard, this fully automated segmentation system exhibited a high accuracy for assessing segmentation and quantification of abdominal muscle and adipose tissues of CT slices at the L3 in CRC patients.

11.
3D Print Addit Manuf ; 11(2): e688-e697, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38689921

RESUMEN

Microcantilever structures such as microgears play an important role in precision mechanisms, where highly accurate cantilever characteristics guarantee the reliable function of these structures. Projection-based stereolithography (PSL) technology is widely used to fabricate sophisticated microstructures owing to its high precision and remarkable efficiency, and plenty of works have been done to improve the precision of structures with macroscale. However, the shape accuracy of microcantilever structures fabricated through PSL process is always neglected, which severely hinders its application in precision mechanisms. In this work, we investigated the influence of major factors on the shape accuracy of microcantilever structures in PSL process through orthogonal tests. Different resin materials were tested to investigate the influence of material properties. Printing experiments showed that for a given PSL system, microcantilever structures with confined size could be directly and accurately manufactured using a set of optimized processing parameters, which dramatically speed up the production process and effectively improved the reliability of microcantilevers. This work provides a comprehensive understanding of the capability of PSL to fabricate microcantilever structures and guides the manufacturing processes of micromechanisms with cantilever features, which effectually promotes the industrial application of PSL technology.

12.
J Genet Genomics ; 51(8): 824-835, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38657948

RESUMEN

Environmental factors such as diet and lifestyle can influence the health of both mothers and offspring. However, its transgenerational transmission and underlying mechanisms remain largely unknown. Here, using a maternal lactation-period low-protein diet (LPD) mouse model, we show that maternal LPD during lactation causes decreased survival and stunted growth, significantly reduces ovulation and litter size, and alters the gut microbiome in the female LPD-F1 offspring. The transcriptome of LPD-F1 metaphase II (MII) oocytes shows that differentially expressed genes are enriched in female pregnancy and multiple metabolic processes. Moreover, maternal LPD causes early stunted growth and impairs metabolic health, which is transmitted over two generations. The methylome alteration of LPD-F1 oocytes can be partly transmitted to the F2 oocytes. Together, our results reveal that LPD during lactation transgenerationally affects offspring health, probably via oocyte epigenetic changes.


Asunto(s)
Dieta con Restricción de Proteínas , Lactancia , Animales , Femenino , Lactancia/genética , Dieta con Restricción de Proteínas/efectos adversos , Ratones , Embarazo , Oocitos/metabolismo , Microbioma Gastrointestinal , Epigénesis Genética , Fenómenos Fisiologicos Nutricionales Maternos , Transcriptoma/genética , Masculino , Metilación de ADN , Efectos Tardíos de la Exposición Prenatal/genética
13.
Adv Sci (Weinh) ; 11(19): e2400403, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38483033

RESUMEN

Improving interface connectivity of magnetic nanoparticles in carbon aerogels is crucial, yet challenging for assembling lightweight, elastic, high-performance, and multifunctional carbon architectures. Here, an in situ growth strategy to achieve high dispersion of metal-organic frameworks (MOFs)-anchored cellulose nanofibrils to enhance the interface connection quality is proposed. Followed by a facile freeze-casting and carbonization treatment, sustainable biomimetic porous carbon aerogels with highly dispersed and closely connected MOF-derived magnetic nano-capsules are fabricated. Thanks to the tight interface bonding of nano-capsule microstructure, these aerogels showcase remarkable mechanical robustness and flexibility, tunable electrical conductivity and magnetization intensity, and excellent electromagnetic wave absorption performance. Achieving a reflection loss of -70.8 dB and a broadened effective absorption bandwidth of 6.0 GHz at a filling fraction of merely 2.2 wt.%, leading to a specific reflection loss of -1450 dB mm-1, surpassing all carbon-based aerogel absorbers so far reported. Meanwhile, the aerogel manifests high magnetic sensing sensibility and excellent thermal insulation. This work provides an extendable in situ growth strategy for synthesizing MOF-modified cellulose nanofibril structures, thereby promoting the development of high-value-added multifunctional magnetic carbon aerogels for applications in electromagnetic compatibility and protection, thermal management, diversified sensing, Internet of Things devices, and aerospace.

14.
J Clin Ultrasound ; 52(5): 635-637, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38532653

RESUMEN

Rhabdomyosarcoma (RMS) is the most common malignant soft tissue tumor in children, and botryoid rhabdomyosarcoma (BRMS) represents a subtype of RMS. BRMS primarily occurs in infants, young children, and adolescent females, with a predilection for mucosa-lined hollow organs such as the bladder, vagina, bile duct, and so on. Its occurrence in the biliary tract is extremely rare. Due to the high malignancy and rapid metastasis of biliary botryoid rhabdomyosarcoma, early diagnosis and treatment are crucial for improving prognosis.


Asunto(s)
Rabdomiosarcoma , Humanos , Rabdomiosarcoma/diagnóstico por imagen , Femenino , Niño , Masculino , Neoplasias del Sistema Biliar/diagnóstico por imagen , Diagnóstico Diferencial , Ultrasonografía/métodos
15.
J Med Genet ; 61(7): 652-660, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38508705

RESUMEN

BACKGROUND: The ZFHX3 gene plays vital roles in embryonic development, cell proliferation, neuronal differentiation and neuronal death. This study aims to explore the relationship between ZFHX3 variants and epilepsy. METHODS: Whole-exome sequencing was performed in a cohort of 378 patients with partial (focal) epilepsy. A Drosophila Zfh2 knockdown model was used to validate the association between ZFHX3 and epilepsy. RESULTS: Compound heterozygous ZFHX3 variants were identified in eight unrelated cases. The burden of ZFHX3 variants was significantly higher in the case cohort, shown by multiple/specific statistical analyses. In Zfh2 knockdown flies, the incidence and duration of seizure-like behaviour were significantly greater than those in the controls. The Zfh2 knockdown flies exhibited more firing in excitatory neurons. All patients presented partial seizures. The five patients with variants in the C-terminus/N-terminus presented mild partial epilepsy. The other three patients included one who experienced frequent non-convulsive status epilepticus and two who had early spasms. These three patients had also neurodevelopmental abnormalities and were diagnosed as developmental epileptic encephalopathy (DEE), but achieved seizure-free after antiepileptic-drug treatment without adrenocorticotropic-hormone/steroids. The analyses of temporal expression (genetic dependent stages) indicated that ZFHX3 orthologous were highly expressed in the embryonic stage and decreased dramatically after birth. CONCLUSION: ZFHX3 is a novel causative gene of childhood partial epilepsy and DEE. The patients of infantile spasms achieved seizure-free after treatment without adrenocorticotropic-hormone/steroids implies a significance of genetic diagnosis in precise treatment. The genetic dependent stage provided an insight into the underlying mechanism of the evolutional course of illness.


Asunto(s)
Epilepsias Parciales , Proteínas de Homeodominio , Espasmos Infantiles , Animales , Niño , Preescolar , Femenino , Humanos , Lactante , Masculino , Epilepsias Parciales/genética , Epilepsias Parciales/tratamiento farmacológico , Secuenciación del Exoma , Predisposición Genética a la Enfermedad , Proteínas de Homeodominio/genética , Mutación , Espasmos Infantiles/genética , Drosophila
16.
Sci Adv ; 10(11): eadl6498, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38478599

RESUMEN

Designing a functional, conductive metal-organic framework (cMOF) is highly desired. Substantial efforts have been dedicated to increasing the intralayer conjugation of the cMOFs, while less dedication has been made to tuning the interlayer charge transport of the metal-organic nanosheets for the controllable dielectric property. Here, we construct a series of conductive bimetallic organic frameworks of (ZnxCu3-x) (hexahydroxytriphenylene)2 (ZnCu-HHTP) to allow for fine-tuned interlayer spacing of two-dimensional frameworks, by adjusting the ratios of Zn and Cu metal ions. This approach for atomistic interlayer design allows for the finely control of the charge transport, band structure, and dielectric properties of the cMOF. As a result, Zn3Cu1-HHTP, with an optimal dielectric property, exhibits high-efficiency absorption in the gigahertz microwave range, achieving an ultra-strong reflection loss of -81.62 decibels. This study not only advances the understanding of the microstructure-function relationships in cMOFs but also offers a generic nanotechnology-based approach to achieving controllable interlayer spacing in MOFs for the targeted applications.

17.
J Org Chem ; 89(7): 5049-5059, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38491018

RESUMEN

A green and practical protocol of defluoroborylation of polyfluoroarenes with stable and readily accessible NHC-borane was developed, using 1,2-diphenyldisulfane as a hydrogen atom transfer (HAT) and single electron transfer (SET) reagent precursor under visible-light irradiation, leading to the concise formation of value-added fluorinated organoboron scaffolds. Mechanism studies revealed the method underwent a boryl radical addition reaction with polyfluoroarene, followed by successive single electron transfer pathways and defluorination of the C-F bond to offer the targeted product. This unprecedented platform relies on 1,2-diphenyldisulfane and base without using expensive photocatalysts, highlighting the methodology has promising application value to prepare borylated polyfluoroarene compounds.

18.
Endocrine ; 84(3): 1072-1080, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38200401

RESUMEN

PURPOSE: Graves' orbitopathy (GO) is the main extrathyroidal manifestation of Graves' disease. However, limited studies have investigated the actual efficacy of selenium in GO therapy. This longitudinal study explored the effect of selenium on QOL and prognosis of patients with mild-to-moderate GO. METHODS: We conducted a 5-year prospective controlled cohort clinical trial to determine the effect of selenium on 74 patients with mild-to-moderate GO. Patients received selenium yeast or placebo orally for 6 months and were followed up at 6 months and at 5 years by biochemical examination, ophthalmologist evaluation and QOL questionnaire to assess oculopathy and QOL. RESULTS: (1) During a follow-up period of 3-6 months, in the selenium group, the symptoms of tearing, grittiness and conjunctival congestion improved (P < 0.01); clinical activity scores and total GO-QOL scores increased relative to baseline (P < 0.01); TRAb was decreased at the 6-month evaluation (P = 0.003); and patients treated with selenium had a higher rate of improvement and a lower rate of worsening than patients treated with placebo (P < 0.05). (2) Exploratory evaluations at 6 months after drug withdrawal confirmed the earlier results; further changes included alleviation of blurred vision and double vision symptoms in the selenium group (P < 0.01). (3) At the 5-year follow-up, compared with baseline, proptosis, clinical activity scores, TRAb level and total GO-QOL scores in both the selenium and placebo groups were significantly improved (P < 0.01). CONCLUSION: Six months of selenium supplementation may effectively change the early course of mild-to-moderate GO, but this regimen makes no difference in long-term outcomes.


Asunto(s)
Oftalmopatía de Graves , Calidad de Vida , Selenio , Humanos , Oftalmopatía de Graves/tratamiento farmacológico , Femenino , Masculino , Selenio/uso terapéutico , Persona de Mediana Edad , Adulto , Estudios Prospectivos , Resultado del Tratamiento , Índice de Severidad de la Enfermedad , Estudios de Seguimiento , Estudios Longitudinales , Anciano
19.
Acad Radiol ; 31(7): 2818-2826, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38182443

RESUMEN

RATIONALE AND OBJECTIVES: This study aimed to determine the feasibility of using the deep learning (DL) method to determine the degree (whether myometrial invasion [MI] >50%) of MI in patients with endometrial cancer (EC) based on ultrasound (US) images. MATERIALS AND METHODS: From September 2017 to April 2023, 1289 US images of 604 patients with EC who underwent surgical resection at center 1, center 2 or center 3 were obtained and divided into a training set and an internal validation set. Ninety-five patients from center 4 and center 5 were randomly selected as the external testing set according to the same criteria as those for the primary cohort. This study evaluated three DL models trained on the training set and tested them on the validation and testing sets. The models' performance was analyzed based on accuracy, sensitivity, specificity, and area under the receiver operating characteristic curve (AUC), and the performance of the models was subsequently compared with that of 15 radiologists. RESULTS: In the final clinical diagnosis of MI in patients with EC, EfficientNet-B6 showed the best performance in the testing set in terms of area under the curve (AUC) [0.814, 95% CI (0.746-0.882]; accuracy [0.802, 95% CI (0.733-0.855]; sensitivity [0.623]; specificity [0.879]; positive likelihood ratio (PLR) [6.750]; and negative likelihood ratio (NLR) [0.389]. The diagnostic efficacy of EfficientNet-B6 was significantly better than that of the 15 radiologists, with an average diagnostic accuracy of 0.681, average AUC of 0.678, AUC of the best performance of 0.739, accuracy of 0.716, sensitivity of 0.806, specificity 0.672, PLR2.457, and NLR 0.289. CONCLUSION: Based on the preoperative US images of patients with EC, the DL model can accurately determine the degree of endometrial MI; the performance of this model is significantly better than that of radiologists, and it can effectively assist in clinical treatment decisions.


Asunto(s)
Aprendizaje Profundo , Neoplasias Endometriales , Miometrio , Invasividad Neoplásica , Ultrasonografía , Humanos , Femenino , Neoplasias Endometriales/diagnóstico por imagen , Neoplasias Endometriales/patología , Persona de Mediana Edad , Invasividad Neoplásica/diagnóstico por imagen , Ultrasonografía/métodos , Anciano , Miometrio/diagnóstico por imagen , Miometrio/patología , Sensibilidad y Especificidad , Radiólogos , Estudios de Factibilidad , Adulto , Vagina/diagnóstico por imagen , Vagina/patología , Estudios Retrospectivos , Anciano de 80 o más Años
20.
Artículo en Inglés | MEDLINE | ID: mdl-37918461

RESUMEN

The p38 mitogen-activated protein kinase (p38 MAPK) is a multifunctional molecule that is involved in cellular response to various stressful stimuli. In the present study, the full-length cDNA sequence of p38 MAPK (Lcp38 MAPK) was identified from the large yellow croaker Larimichthys crocea, which encoded a polypeptide of 361 amino acid residues. The predicted Lcp38 MAPK protein contained a highly conserved Thr-Gly-Tyr (TGY) motif, a glutamate and aspartate (ED) site, a substrate binding site (Ala-Thr-Arg-Trp < ATRW>), and a serine/threonine kinase catalytic (S_TKc) domain characteristic of the MAPK family. The constitutive expression of Lcp38 MAPK was detected in most of the tissues examined with the strongest expression in intestine. Subcellular localization in LCK cells (kidney cell line from a L. crocea) revealed that Lcp38 MAPK existed in both the cytoplasm and cell nucleus. The expression of Lcp38 MAPK after temperature stress was tested in LCK cells. The results indicated that Lcp38 MAPK transcripts were significantly upregulated under both cold (10 °C) and heat stress (35 °C) (P < 0.05). Furthermore, the phosphorylation levels of p38 MAPK as well the transcriptional levels of heat shock protein 27 (HSP27) and caspase3 in LCK cells were significantly induced under thermal exposure (P < 0.05). However, the cold- and heat induced HSP27 and caspase3 expression was significantly suppressed by SB203580, a specific inhibitor of p38-MAPK (P < 0.05). These findings indicated that Lcp38 MAPK might be involved in the cellular stress response via HSP27 and caspase3 in large yellow croaker.


Asunto(s)
Perciformes , Proteínas Quinasas p38 Activadas por Mitógenos , Animales , Proteínas Quinasas p38 Activadas por Mitógenos/genética , Proteínas de Choque Térmico HSP27/metabolismo , Fosforilación , Temperatura , Perciformes/genética , Perciformes/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA