Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
J Environ Manage ; 365: 121683, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38963968

RESUMEN

Ammonia recovery from wastewater has positive environmental benefits, avoiding eutrophication and reducing production energy consumption, which is one of the most effective ways to manage nutrients in wastewater. Specifically, ammonia recovery by membrane distillation has been gradually adopted due to its excellent separation properties for volatile substances. However, the global optimization of direct contact membrane distillation (DCMD) operating parameters to maximize ammonia recovery efficiency (ARE) has not been attempted. In this work, three key operating factors affecting ammonia recovery, i.e., feed ammonia concentration, feed pH, and DCMD running time, were identified from eight factors, by a two-level Plackett-Burman Design (PBD). Subsequently, Box-Behnken design (BBD) under the response surface methodology (RSM) was used to model and optimize the significant operating parameters affecting the recovery of ammonia though DCMD identified by PBD and statistically verified by analysis of variance (ANOVA). Results showed that the model had a high coefficient of determination value (R2 = 0.99), and the interaction between NH4Cl concentration and feed pH had a significant effect on ARE. The optimal operating parameters of DCMD as follows: NH4Cl concentration of 0.46 g/L, feed pH of 10.6, DCMD running time of 11.3 h, and the maximum value of ARE was 98.46%. Under the optimized conditions, ARE reached up to 98.72%, which matched the predicted value and verified the validity and reliability of the model for the optimization of ammonia recovery by DCMD process.


Asunto(s)
Amoníaco , Destilación , Aguas Residuales , Amoníaco/química , Destilación/métodos , Aguas Residuales/química , Eliminación de Residuos Líquidos/métodos , Modelos Teóricos , Concentración de Iones de Hidrógeno , Membranas Artificiales
2.
J Colloid Interface Sci ; 675: 639-645, 2024 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-38991278

RESUMEN

The Zn dendrite limits the practical application of aqueous zinc-ion batteries in the large-scale energy storage systems. To suppress the growth of Zn dendrites, a zinc ionophore of hydroxychloroquine (defined as HCQ) applied in vivo treatment is investigated as the electrolyte additive. HCQ dynamically regulates zinc ion concentration in the outer Helmholtz layer, promoting even Zn plating at the anode/electrolyte interface. This is evidenced by the scanning electron microscopy, which delivers planar Zn plating after cycling. It is further supported by the X-ray diffraction spectroscopy, which reveals the growth of Zn (002) plane. Additionally, the reduced production of H2 during Zn plating/stripping is detected by the in-situ differential electrochemical mass spectrometry (DEMS), which shows the resistance of Zn (002) to hydrogen evolution reaction. The mechanism of dynamic regulation for zinc ion concentration is demonstrated by the in-situ optical microscopy. The hydrated zinc ion can be further plated more rapidly to the uneven location than the case in other regions, which is resulted from the dynamic regulation for zinc ion concentration. Therefore, the uniform Zn plating is formed. A cycling life of 1100 h is exhibited in the Zn||Zn symmetric cell at 1.6 mA cm-2 with the capacity of 1.6 mAh cm-2. The Zn||Cu battery exhibits a cycling life of 200 cycles at 4 mA cm-2 with a capacity of 4 mAh cm-2 and the average Coulombic efficiency is larger than 99 %. The Zn||VO2 battery with HCQ modified electrolyte can operate for 1500 cycles at 4 A g-1 with a capacity retention of 90 %. This strategy in the present work is wished to advance the development of zinc-ion batteries for practical application.

3.
J Colloid Interface Sci ; 672: 32-42, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-38824686

RESUMEN

The alkaline solid-state electrolytes have received widespread attention for their good safety and electrochemical stability. However, they still suffer from low conductivity and poor mechanical properties. Herein, we report the synthesis of double-network featured hydroxide-conductive membranes fabricated by polyvinyl alcohol (PVA) and chitosan (CS) as the double-skeletons. Then, we implanted quaternary ammonium salt guar hydroxypropyltrimonium chloride (GG) as the OH- conductor for high-performance electrochemical devices. By virtue of the unique stripe-like structure shared from the double skeleton with a high degree of compatibility and stronger hydrogen bond interactions, the polyvinyl alcohol/chitosan-guar hydroxypropyltrimonium chloride (PCG) solid-state electrolytes achieved optimal thermal stability (> 300 °C), mechanical property (∼ 34.15 MPa), dimensional stability (at any bending angle), and high ionic conductivity (13 mS cm-1) and ion mobility number (tion âˆ¼ 0.90) compared with chitosan-guar hydroxypropyltrimonium chloride (CG) and polyvinyl alcohol-guar hydroxypropyltrimonium chloride (PG) electrolyte membrane. As a proof-of-concept application, the "sandwich"-type zinc-air battery (ZAB) assembled using PCG membrane as the electrolyte realized a high open-circuit voltage (1.39 V) and an excellent power density (128 mW cm-2). Notably, in addition to its long-term cycle life (30 h, 2 mA cm-2) and stable discharge plateau (12 h, 5 mA cm-2), it could even enable a flexible ZAB (F-ZAB) to readily power light-emitting diodes (LED) at any bending angle. These merits afford the PCG membrane a promising electrolyte for improving the performance of solid-state batteries.

4.
J Colloid Interface Sci ; 669: 927-934, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38754145

RESUMEN

Rational construction of efficient bifunctional catalysts with robust catalytic activity and durability is significant for overall water splitting (conversion between water and hydrogen fuel/oxygen) using non-precious metal systems. In this work, the hierarchically porous N, P, O-doped transition metal phosphate in the Ni foam (NF) electrode (hollow flower-like NPO/NixPy@NF) was prepared through facile hydrothermal method coupled with phosphorization treatment. The hierarchical hollow flower-like NPO/NixPy@NF electrodes exhibited high bifunctional activity and stability for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) in alkaline solutions. The optimized electrode showed low overpotentials of 76 and 240 mV for HER and OER to reach a current density of 10 mA cm-2, respectively. Notably, the NPO/NixPy@NF electrode only required a low voltage of 1.99 V to reach the current densities of 100 mA cm-2 with long-term stability for overall water splitting using the NPO/NixPy@NF|| NPO/NixPy@NF cell, surpassing that of the Pt/C-RuO2 (2.24 V@ 100 mA cm-2). The good catalytic and battery performance should be attributed to i) the open hierarchical structure that enhanced the mass transfer; ii) a highly conductive substrate that accelerated the electron transfer; iii) the rich heterojunction and strong synergy between Ni2P and Ni5P4 that improved the catalytic kinetic; iv) the proper-thickness amorphous phosphorus oxide nitride (PON) shell that realized the stability. This work demonstrates a promising methodology for designing bifunctional transition metal phosphides with high performance for efficient water splitting.

5.
Angew Chem Int Ed Engl ; 63(17): e202319529, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38443734

RESUMEN

Limited triple-phase boundaries arising from the accumulation of solid discharge product(s) in solid-state cathodes (SSCs) pose a challenge to high-property solid-state lithium-oxygen batteries (SSLOBs). Light-assisted SSLOBs have been gradually explored as an ingenious system; however, the fundamental mechanisms of the SSCs interface behavior remain unclear. Here, we discovered that light assistance can enhance the fast inner-sphere charge transfer in SSCs and regulate the discharge products with spherical particles generated via the surface growth model. Moreover, the high photoelectron excitation and transportation capabilities of SSCs can retard cathodic catalytic decay by avoiding structural degradation of the cathode with a reduced charge voltage. The light-induced SSLOBs exhibited excellent stability (170 cycles) with a low discharge-charge polarization overpotential (0.27 V). Furthermore, transparent SSLOBs with exceptional flexibility, mechanical stability, and multiform shapes were fabricated for theory-to-practical applications in sunlight-induced batteries. Our study opens new opportunities for the introduction of solar energy into energy storage systems.

6.
Foods ; 13(4)2024 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-38397607

RESUMEN

This study investigated the impact of chitosan (CH, 1%) and aloe vera gel (AL, 30%) edible coatings on the preservation of blue honeysuckle quality during a 28-day storage at -1 °C. Coating with CH, AL, and CH+AL led to notable enhancements in several key attributes. These included increased firmness, total soluble solids, acidity, pH, and antioxidant capacity (measured through DPPH, ABTS, and FRAP assays), as well as the preservation of primary (ascorbic acid) and secondary metabolites (TPC, TAC, and TFC). The TAC and TFC levels were approximately increased by 280% and 17%, respectively, in coated blue honeysuckle after 28 d compared to uncoated blue honeysuckle. These coatings also resulted in reduced weight loss, respiration rate, color, abscisic acid, ethylene production, and malondialdehyde content. Notably, the CH+AL treatment excelled in preserving secondary metabolites and elevating FRAP-reducing power, demonstrating a remarkable 1.43-fold increase compared to the control after 28 days. Overall, CH+AL exhibited superior effects compared to CH or AL treatment alone, offering a promising strategy for extending the shelf life and preserving the quality of blue honeysuckle during storage.

7.
J Colloid Interface Sci ; 658: 1016-1024, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38160124

RESUMEN

Electrochemical conversion of carbon dioxide (CO2) into syngas is considered a promising approach to mitigate global warming and achieve the recycling of carbon resources. In this work, a series of core-shell metal (copper/indium) oxides with abundant grain boundaries (GBs) between the amorphous In2O3 and cubic Cu2O have been prepared by template-assisted co-precipitation method and tested for the synthesis of syngas by electrochemical CO2 reduction reaction (CO2RR). The phases of Cu2O and In2O3 are independent in bimetallic oxides and do not form any alloy oxidation phase, thus Cu2O and In2O3 can maintain their crystal structure and chemical properties in bimetallic oxides. The Cu2O and In2O3 would been completely reduced to metallic Cu and In during CO2RR. The derived copper/indium possesses the maximum FE of CO (80 %) at -0.77 V vs. reversible hydrogen electrode (RHE) and a good stability of 10 h in an H-type cell. Further applied the copper/indium oxide in the MEA reactor, the FE of CO is more than 80 % at 2.6 V and the total FE of syngas is near 100 % at all applied potentials. More importantly, the H2/CO ratios can be tuned from 1/1 to 1/4 by changing the applied voltages in MEA. Therefore, this study provides a promising strategy to promote the electrocatalytic CO2RR conversion by creating abundant grain boundaries in bimetallic oxides to regulate the ratio of H2/CO.

8.
Plant Physiol Biochem ; 204: 108090, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37847973

RESUMEN

Blue honeysuckle (Lonicera caerulea L.) is an emerging commercial fruit in the world, has been known for its multiple anthocyanins in the berries, cyanidin-3-glucoside (C3G) is a major anthocyanin in berries and it makes up 76-92% of the total anthocyanins content, with high antioxidant capacity, and widely used in food products. In this review, recent studies related to anthocyanins in blue honeysuckle were sorted out, including the current status of research on anthocyanins in blue honeysuckle berries, especially C3G, qualitative and quantitative analysis of anthocyanins in berries, extraction and purification methods of anthocyanins from blue honeysuckle, in addition, biological effects of blue honeysuckle, and recommended utilization. Blue honeysuckle contains polyphenols, flavonoids, anthocyanins, minerals, and multiple bioactive compounds, it has been extensively reported to have significant antioxidant, cardioprotective, anti-inflammatory, neuroprotective, anticancer, and anti-diabetic functions, and has been used in a variety of food products as raw materials.


Asunto(s)
Antocianinas , Lonicera , Antocianinas/análisis , Antioxidantes/farmacología , Flavonoides/análisis , Polifenoles/análisis , Frutas/química , Extractos Vegetales
9.
Food Chem ; 427: 136605, 2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-37390741

RESUMEN

In this paper, the structures of polyphenols and their bioactivity of black mulberry (Morus nigra L.) cv. 'Heisang No. 1' were comprehensively analyzed. The 11 anthocyanins and 20 non-anthocyanin phenolic compounds were identified and quantified by liquid chromatography high-resolution time-of-flight mass spectrometry (LC-HR-TOF/MS2). The cyanidin-3-glucoside and cyanidin-3-rutinoside were the major anthocyanins in the black mulberry. In addition, the black mulberry showed potent antioxidant capacity as assessed by DPPH, ABTS, and FRAP assays. Black mulberry anthocyanins exhibited stronger inhibition activities against α-amylase, α-glucosidase, and lipase compared to non-anthocyanin polyphenols, with IC50 values of 1.10, 4.36, and 9.18 mg/mL, respectively. The total anthocyanin content of black mulberry crude extracts and anthocyanins was 570.10 ± 77.09 and 1278.23 ± 117.60 mg C3GE/100 g DW, respectively. Black mulberry may be a rich source of polyphenols, natural antioxidants, and effective antidiabetic substances with great potential in the food industry.


Asunto(s)
Morus , Polifenoles , Polifenoles/análisis , Antocianinas/análisis , Antioxidantes/química , Morus/química , Fenoles/análisis , Frutas/química , Extractos Vegetales/química
10.
Heliyon ; 9(4): e14685, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37035373

RESUMEN

Blue honeysuckle is a source of anthocyanins with great potential as a food colorant, and a healthy and functional food material, and contains much cyanidin 3-glucoside (C3G), which has many benefits for human health. A rapid, reliable, accurate quantification method of anthocyanin content in different varieties of blue honeysuckle is critical to help in breeding and selecting excellent varieties which are used in the food processing industry and healthcare industry. Our objective was to verify the modified quantification method of C3G and quantified C3G content in three blue honeysuckle varieties of 'Berel', 'Lanjingling' and 'Wulan' using the modified HPLC method by Agilent 1200 system and CAPCELL PAK C18 column (150 mmⅹ4.6 mm, I. D., 5 µm, Japan), with detection at 530 nm, the solvent flow rate was 1 mL/min, the temperature of the column chamber is 35 °C. The results indicated that the modified method was validated in terms of linearity (R2 = 0.999), precision (RSD = 0.61%), stability (RSD = 5.23%), and recovery with a good level, and C3G can be quickly quantified in blue honeysuckle. In addition, 'Wulan' contains the highest C3G level compared with 'Lanjingling' and 'Berel'.

11.
Int J Phytoremediation ; 25(9): 1155-1164, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36355569

RESUMEN

In this study, we explored the potential of a newly prepared nano-zero valent zinc (nZVZn), biochar (BC)/nZVZn and BC/hydroxyapatite-alginate (BC/HA-alginate) composites for the removal of inorganic As species from water. Relatively, higher percentage removal of As(III) and As(V) was obtained by nZVZn at pH 3.4 (96% and 94%, respectively) compared to BC/nZVZn (90% and 88%) and BC/HA-alginate (88% and 80%) at pH 7.2. Freundlich model provided the best fit (R2 = up to 0.98) for As(III) and As(V) sorption data of all the sorbents, notably for nZVZn. The pseudo-second order model well-described kinetics of As(III) and As(V) (R2 = 0.99) sorption on all the sorbents. The desorption experiments demonstrated that the As removal efficiency, up to the third sorption/desorption cycle, was in the order of nZVZn ∼ BC/HA-alginate (88%) > BC/nZVZn (84%). The Fourier transform infrared spectroscopy depicted that the -OH, -COOH, Zn-O and Zn-OH surface functional groups were responsible for the sorption of As(III) or As(V) on the sorbents investigated here. This study highlights that removal of As species from water by BC/nZVZn composite can be compared with nZVZn, suggesting that integrating BC with nZVZn could efficiently remove As from As-contaminated drinking water.


This is the first study to explore the potential of a newly prepared sugarcane bagasse biochar/nano-zerovalent zinc (BC/nZVZn) based composite for the removal of inorganic arsenic (As) species from water. The results indicated high percentage removal of As(III) and As(V) from water by BC/nZVZn that were comparable to nZVZn alone.


Asunto(s)
Arsénico , Contaminantes Químicos del Agua , Purificación del Agua , Zinc , Contaminantes Químicos del Agua/química , Adsorción , Purificación del Agua/métodos , Biodegradación Ambiental , Carbón Orgánico/química , Agua , Cinética
12.
Food Chem ; 385: 132588, 2022 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-35303652

RESUMEN

The structure of proanthocyanidins extracted from bird cherry fruits was characterized by HPLC-ESI/MS2 and MALDI-TOF/MS analyses, and their subunits and mean degree of polymerization (mDP) were investigated by thiolysis reaction, and the inhibition activity against starch hydrolases measured using the high-throughput turbidity assay. This is the first mass spectrometric analysis to thoroughly investigate the structure and mDP of proanthocyanidins in bird cherry fruits. Bird cherry proanthocyanidins were categorized as oligomeric proanthocyanidins (mDP = 5.6), which constituted of (epi)gallocatechins and (epi)catechins. The proanthocyanidins increased from a (epi)gallocatechin-[(epi)catechin]3 tetramer to a (epi)gallocatechin-[(epi)catechin]11 dodecamer through the addition of one (epi)catechin with both A-type and B-type linkages. The proanthocyanidins had potent α-amylase and α-glucosidase inhibition activities with IC50 values of 0.19 ± 0.01 µg/mL and 0.18 ± 0.006 µg/mL, comparing favorably to commercial drug acarbose. Bird cherry oligomeric proanthocyanidins are a promising starch hydrolase inhibitor for the application of potential functional food components.


Asunto(s)
Catequina , Proantocianidinas , Prunus , Catequina/química , Polimerizacion , Proantocianidinas/análisis , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Almidón , alfa-Amilasas
13.
Nanoscale ; 14(5): 2065-2073, 2022 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-35080227

RESUMEN

Exploring high-activity electrocatalysts for an oxygen reduction reaction (ORR) is of great significance for a variety of renewable energy conversion and storage technologies. Here, ultrafine Mo2C nanoparticles assembled in N and P-co-doped carbon (Mo2C@NPC) was developed from ZIF-8 encapsulated molybdenum-based polyoxometalates (PMo12) as a highly efficient ORR electrocatalyst and shows excellent performance for zinc-air batteries. The well distribution of the PMo12 in ZIF-8 results in the formation of ultrafine Mo2C nanocrystallites encapsulated in a porous carbon matrix after pyrolysis. Significantly, from experimental and theoretical investigations, the highly porous structure, highly dispersed ultrafine Mo2C and the N and P co-doping in the Mo2C@NPC lead to the remarkable ORR activity with an onset potential of ∼1.01 V, a half-wave potential of ∼0.90 V and a Tafel slope of 51.7 mV dec-1 at 1600 rpm in 0.1 M KOH. In addition, the Mo2C@NPC as an ORR catalyst in zinc-air batteries achieved a high power density of 266 mW cm-2 and a high specific capacity of 780.9 mA h g-1, exceeding that driven by commercial Pt/C. Our results revealed that the porous architecture and ultrafine Mo2C nanocrystallites of the electrocatalysts could facilitate mass transport and increase the accessibility of active sites, thus optimizing their performances in an ORR. The present study provides some guidelines for the design and synthesis of efficient nanostructured electrocatalysts.

14.
J Colloid Interface Sci ; 606(Pt 2): 994-1003, 2022 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-34487946

RESUMEN

Electrochemical reduction of CO2 to fuels and chemicals is an effective way to reduce greenhouse gas emissions and alleviate the energy crisis, but the highly active catalysts necessary for this reaction under mild conditions are still rare. In this work, we grew CuBi bimetallic catalysts on derived copper foam substrates by co-electrodeposition, and then investigated the correlation between co-electrodeposition potential and electrochemical performance in CO2-to-formate conversion. Results showed that the bimetallic catalyst formed at a low potential of - 0.6 V vs. AgCl/Ag electrode achieved the highest formate Faradaic efficiency (FEformate) of 94.4% and a current density of 38.5 mA/cm2 at a low potential of - 0.97 V vs. reversible hydrogen electrode (RHE). Moreover, a continuous-flow membrane electrode assembly reactor also enabled the catalyst to show better performance (a FEformate of 98.3% at 56.6 mA/cm2) than a traditional H-type reaction cell. This work highlights the vital impact of co-electrodeposition potential on catalyst performance and provides a basis for the modulated growth of bimetallic catalysts on substrates. It also shows the possibility of preparing Bi-based catalysts with no obvious decrease in catalytic activity that have been partially replaced with more economic copper.

15.
Nanomicro Lett ; 14(1): 36, 2021 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-34918185

RESUMEN

Rechargeable zinc-air batteries (ZABs) are currently receiving extensive attention because of their extremely high theoretical specific energy density, low manufacturing costs, and environmental friendliness. Exploring bifunctional catalysts with high activity and stability to overcome sluggish kinetics of oxygen reduction reaction and oxygen evolution reaction is critical for the development of rechargeable ZABs. Atomically dispersed metal-nitrogen-carbon (M-N-C) catalysts possessing prominent advantages of high metal atom utilization and electrocatalytic activity are promising candidates to promote oxygen electrocatalysis. In this work, general principles for designing atomically dispersed M-N-C are reviewed. Then, strategies aiming at enhancing the bifunctional catalytic activity and stability are presented. Finally, the challenges and perspectives of M-N-C bifunctional oxygen catalysts for ZABs are outlined. It is expected that this review will provide insights into the targeted optimization of atomically dispersed M-N-C catalysts in rechargeable ZABs.

16.
J Agric Food Chem ; 69(51): 15437-15457, 2021 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-34842436

RESUMEN

Arabinoxylans (AXs) are widely distributed in various cereal grains, such as wheat, corn, rye, barley, rice, and oat. The AX molecule contains a linear (1,4)-ß-D-xylp backbone substituted by α-L-araf units and occasionally t-xylp and t-glcpA through α-(1,2) and/or α-(1,3) glycosidic linkages. Arabinoxylan shows diversified functional and bioactive properties, influenced by their molecular mass, branching degree, ferulic acid (FA) content, and the substitution position and chain length of the side chains. This Review summarizes the extraction methods for various cereal sources, compares their structural features and functional/bioactive properties, and highlights the established structure-function/bioactivity relationships, intending to explore the potential functions of AXs and their industrial applications.


Asunto(s)
Grano Comestible , Hordeum , Triticum , Xilanos
17.
Adv Mater ; 33(34): e2100997, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34218474

RESUMEN

Metal-nitrogen-carbon (M-N-C) material with specifically coordinated configurations is a promising alternative to costly Pt-based catalysts. In the past few years, great progress is made in the studies of M-N-C materials, including the structure modulation and local coordination environment identification via advanced synthetic strategies and characterization techniques, which boost the electrocatalytic performances and deepen the understanding of the underlying fundamentals. In this review, the most recent advances of M-N-C catalysts with specifically coordinated configurations of M-Nx (x = 1-6) are summarized as comprehensively as possible, with an emphasis on the synthetic strategy, characterization techniques, and applications in typical electrocatalytic reactions of the oxygen reduction reaction, oxygen evolution reaction, hydrogen evolution reaction, CO2 reduction reaction, etc., along with mechanistic exploration by experiments and theoretical calculations. Furthermore, the challenges and potential perspectives for the future development of M-N-C catalysts are discussed.

18.
ACS Appl Mater Interfaces ; 12(47): 52836-52844, 2020 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-33179509

RESUMEN

The design and synthesis of low-cost and highly efficient bifunctional catalysts is an inevitable path for rechargeable zinc-air batteries (rZABs). In this work, double-carbon co-supported Co-based oxide with the Cu and S substitutions are synthesized by a one-step hydrothermal method and formed a unique honeycomb structure. As expected, the (Cu, Co)3OS3@CNT-C3N4 exhibits high oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) activity with low overpotential (0.86 V), high power density (215 mW cm-2), and long-term discharge stability (115 h). The (Cu, Co)3OS3@CNT-C3N4-based rZAB also shows a stronger charge-discharge durability with a very low voltage gap of merely 0.5 V than that of Pt/C+RuO2. The high catalytic performances are attributed to these following reasons: (i) the porous morphology and hierarchical structure with plentiful "catalytic buffer", which accelerates the mass transfer; (ii) a high-speed electronic transmission network established by C3N4 and carbon nanotube (CNT), enhancing the conductivity; (iii) the strong synergistic effect between (Cu, Co)3OS3@CNT and C3N4, which improves the kinetics of ORR/OER; and (iv) the controllable occupation of Cu ions and S ions, which effectively regulates the CoO6 surface and increases the active site density. This work not only offers a promising ORR/OER electrode for rZAB but also provides a new pathway to understand the improvement mechanism for catalysts by the bi-ion substitutions.

19.
ACS Appl Mater Interfaces ; 12(34): 38202-38210, 2020 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-32805974

RESUMEN

Rational synthesis of bifunctional electrocatalysts with high performance and strong durability is highly demanded rechargeable metal-air battery. In this work, ZIF-derived Co9S8/C coated with conductive graphene nanosheet (Co9S8/GN) was synthesized by a simple solvothermal method and formed a stable double-carbon structure. As expected, the prepared Co9S8/GN catalyst exhibits a high catalytic activity (ΔE: 0.88 V) and long-term durability toward both oxygen reduction reaction and oxygen evolution reaction (ORR and OER), which is even superior to the Pt/C + Ir/C mixture (0.91 V). In addition, the Zn-air battery with the Co9S8/GN catalyst showed higher power density (186 mW cm-2) and more stable charge-discharge cycling performances (2000 cycles) than the Pt/C + Ir/C (118 mW cm-2). Based on these analysis results, the favorable catalytic performance of ORR/OER should be illustrated by the following reasons: (i) large specific surface area and unique mesoporous structure, providing abundant active sites; (ii) good conductivity, accelerating the electrons transfer; and (iii) the unique stable "double-carbon" structures (metal-S-C-C), preventing the agglomeration of metal sulfide, building new quick transfer pathway, and forming the strong electron coupling ability and synergistic effect.

20.
ACS Appl Mater Interfaces ; 12(33): 37164-37172, 2020 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-32667803

RESUMEN

The exploitation of high-efficiency and cheap bifunctional cathode electrocatalyst is of significant importance to rechargeable zinc-air batteries. In this paper, a bimetallic sulfide coupled with a CNT ((Co, Mg)S2@CNTs) hybrid catalyst is developed via a proposed vulcanization process. The (Co, Mg)S2@CNTs) with controllable Mg substitution has a tailored crystal structure (amorphous and crystalline), which catalyzes the oxygen reduction/evolution reaction (ORR/OER). The active sites of CoS2@CNTs are activated by doping Mg ions, which accelerates the kinetics of the oxygen adsorption for ORR and oxygen desorption for OER. Meanwhile, the hybrid catalyst exhibits a unique hierarchal morphology and a "catalytic buffer", which further accelerate the mass transfer of catalytic processes. In addition, the outer wall of CNTs as substrate effectively avoid the agglomeration of (Co, Mg)S2 particles by reasonably providing adsorption sites. The inner and outer walls of CNTs form a high-speed conduction pathway, quickly transferring the electrons produced by oxygen catalytic reactions. As a result, the (Co, Mg)S2@CNTs exhibit an ORR performance comparable with commercial catalyst Pt/C-RuO2 and remarkable OER performance (Ej=10 = 1.59 V). The high power density of 268 mW cm-2 and long-term charge/discharge stability of the zinc-air battery proves the feasibility of (Co, Mg)S2@CNTs application in high-power devices.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA