Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
1.
Antonie Van Leeuwenhoek ; 117(1): 102, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39012584

RESUMEN

This study represents the first analysis of the bacterial community in chickens affected by swollen head syndrome, utilizing 16S rRNA gene sequencing. Samples were obtained from clinical laying chickens and were examined for the presence of Avibacterium paragallinarum (APG) and Ornithobacterium rhinotracheale (ORT) using conventional polymerase chain reaction (PCR). From the samples, five APG-positive (APG) and APG-negative (N-APG) samples were chosen, along with five specific pathogen-free chickens, for 16S rRNA gene sequencing. Results showed that APG and ORT were widely detected in the chicken samples with swollen head syndrome (SHS, 9/10), while APG was detected in all five specific pathogen-free (SPF) samples. In contrast, conventional PCR sensitivity was found to be inadequate for diagnosis, with only 35.7% (5/14) and 11.1% (1/9) sensitivity for APG and ORT, respectively, based on 16S rRNA gene sequencing data. Furthermore, 16S rRNA gene sequencing was able to quantify the bacteria in the samples, revealing that the relative abundance of APG in the APG group ranged from 2.7 to 81.3%, while the relative abundance of APG in the N-APG group ranged from 0.1 to 21.0%. Notably, a low level of APG was also detected in all 5 SPF samples. The study also identified a significant number of animal and human common bacterial pathogens, including but not limited to Gallibacterium anatis, Riemerella columbina, Enterococcus cecorum, Mycoplasma synoviae, Helicobacter hepaticus, and Staphylococcus lentus. In conclusion, 16S rRNA gene sequencing is a valuable tool for bacterial pathogen diagnosis and the discovery of novel bacterial pathogens, while conventional PCR is not reliable for diagnosis.


Asunto(s)
Pollos , Reacción en Cadena de la Polimerasa , Enfermedades de las Aves de Corral , ARN Ribosómico 16S , ARN Ribosómico 16S/genética , Animales , Pollos/microbiología , Reacción en Cadena de la Polimerasa/métodos , Enfermedades de las Aves de Corral/microbiología , Enfermedades de las Aves de Corral/diagnóstico , Bacterias/genética , Bacterias/clasificación , Bacterias/aislamiento & purificación , ADN Bacteriano/genética , Análisis de Secuencia de ADN , Filogenia
2.
Biophys J ; 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39030907

RESUMEN

The significant effects of lipid binding on the functionality of potassium channel KcsA have been validated by brilliant studies. However, the specific interactions between lipids and KcsA, such as binding parameters for each binding event, have not been fully elucidated. In this study, we employed native mass spectrometry to investigate the binding of lipids to KcsA and their effects on the channel. The tetrameric structure of KcsA remains intact even in the absence of lipid binding. However, the subunit architecture of the E71A mutant, which is constantly open at low pH, relies on tightly associated copurified lipids. Furthermore, we observed that lipids exhibit weak binding to KcsA at high pH when the channel is at a closed/inactivation state in the absence of permeant cation K+. This feeble interaction potentially facilitates the association of K+ ions, leading to the transition of the channel to a resting closed/open state. Interestingly, both anionic and zwitterionic lipids strongly bind to KcsA at low pH when the channel is in an open/inactivation state. We also investigated the binding patterns of KcsA with natural lipids derived from E. coli and Streptomyces lividans. Interestingly, lipids from E. coli exhibited much stronger binding affinity compared to the lipids from S. lividans. Among the natural lipids from S. lividans, free fatty acids and triacylglycerols demonstrated the tightest binding to KcsA, whereas no detectable binding events were observed with natural phosphatidic acid lipids. These findings suggest that the lipid association pattern in S. lividans, the natural host for KcsA, warrants further investigation. In conclusion, our study sheds light on the role of lipids in stabilizing KcsA and highlights the importance of specific lipid-protein interactions in modulating its conformational states.

3.
J Hazard Mater ; 474: 134776, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-38852255

RESUMEN

Phthalate esters (PAEs) are widely used as plasticizers and cause serious complex pollution problem in environment. Thus, strains with efficient ability to simultaneously degrade various PAEs are required. In this study, a newly isolated strain Rhodococcus sp. AH-ZY2 can degrade 500 mg/L Di-n-octyl phthalate completely within 16 h and other 500 mg/L PAEs almost completely within 48 h at 37 °C, 180 rpm, and 2 % (v/v) inoculum size of cultures with a OD600 of 0.8. OD600 = 0.8, 2 % (v/v). Twenty genes in its genome were annotated as potential esterase and four of them (3963, 4547, 5294 and 5359) were heterogeneously expressed and characterized. Esterase 3963 and 4547 is a type I PAEs esterase that hydrolyzes PAEs to phthalate monoesters. Esterase 5294 is a type II PAEs esterase that hydrolyzes phthalate monoesters to phthalate acid (PA). Esterase 5359 is a type III PAEs esterase that simultaneously degrades various PAEs to PA. Molecular docking results of 5359 suggested that the size and indiscriminate binding feature of spacious substrate binding pocket may contribute to its substrate versatility. AH-ZY2 is a potential strain for efficient remediation of PAEs complex pollution in environment. It is first to report an esterase that can efficiently degrade mixed various PAEs.


Asunto(s)
Biodegradación Ambiental , Esterasas , Ésteres , Simulación del Acoplamiento Molecular , Ácidos Ftálicos , Rhodococcus , Rhodococcus/metabolismo , Rhodococcus/genética , Rhodococcus/enzimología , Ácidos Ftálicos/metabolismo , Ácidos Ftálicos/química , Esterasas/metabolismo , Esterasas/genética , Ésteres/metabolismo , Ésteres/química , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Plastificantes/metabolismo
4.
Biomacromolecules ; 25(6): 3831-3839, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38728153

RESUMEN

This study utilizes mechanochemistry to prepare retinol acetate (RA) solid dispersion (RA-sodium starch octenyl succinate (SSOS)), resulting in improved solubility, stability, and bioavailability compared with raw RA and commercial RA microcapsules. RA, poloxamer 188, SSOS, and milling beads (8 mm) were mixed in a ratio of 2:1:8:220 (w/w) and ball-milled at 100 rpm for 3 h. RA-SSOS exhibited a solubility of 1020.35 µL/mL and a 98.09% retention rate after aging at 30 °C. Rats fed with RA-SSOS showed an ∼30% increase in organ RA content. Characterization analysis attributed the solubility and stabilization of RA-SSOS to hydrogen bonding between RA and SSOS, along with an amorphous state. RA-SSOS offers significant advantages for the pharmaceutical and food industries, leveraging mechanochemistry to enhance solid dispersions for hydrophobic compounds and optimize drug delivery.


Asunto(s)
Disponibilidad Biológica , Ésteres de Retinilo , Solubilidad , Vitamina A , Animales , Ratas , Vitamina A/química , Vitamina A/farmacocinética , Ésteres de Retinilo/química , Masculino , Ratas Sprague-Dawley , Estabilidad de Medicamentos , Almidón/química , Diterpenos
5.
Biotechnol Lett ; 46(4): 691-698, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38705963

RESUMEN

Protein FadR is known as a fatty acid metabolism global regulator that sustains cell envelope integrity by changing the profile of fatty acid. Here, we present its unique participation in the defense against reactive oxygen species (ROS) in the bacterium. FadR contributes to defending extracellular ROS by maintaining the permeability of the cell membrane. It also facilitates the ROS detoxification process by increasing the expression of ROS neutralizers (KatB, KatG, and AhpCF). FadR also represses the leakage of ROS by alleviating the respiratory action conducted by terminal cytochrome cbb3-type heme-copper oxidases (ccoNOQP). These findings suggest that FadR plays a comprehensive role in modulating the bacterial oxidative stress response, instead of merely strengthening the cellular barrier against the environment. This study sheds light on the complex mechanisms of bacterial ROS defense and offers FadR as a novel target for ROS control research.


Asunto(s)
Proteínas Bacterianas , Regulación Bacteriana de la Expresión Génica , Estrés Oxidativo , Especies Reactivas de Oxígeno , Especies Reactivas de Oxígeno/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Membrana Celular/metabolismo
6.
Microorganisms ; 12(4)2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38674626

RESUMEN

Acidovorax citrulli populations exhibit genetic and phenotypic variations, particularly in terms of copper tolerance. Group I strains of A. citrulli generally exhibit higher copper tolerance compared to group II strains. This study aims to identify genes involved in copper tolerance to better understand the differences in copper tolerance between group I and group II strains. Representative strains pslb65 (group I) and pslbtw14 (group II) were selected for comparison. Deletion mutants of putative copper-tolerance genes and their corresponding complementary strains were constructed. The copper tolerance of each strain was evaluated using the minimum inhibitory concentration method. The results showed that the copA, copZ, cueR, and cueO genes played major roles in copper tolerance in A. citrulli, while cusC-like, cusA-like, and cusB-like genes had minor effects. The different expression levels of copper-tolerance-related genes in pslb65 and pslbtw14 under copper stress indicated that they had different mechanisms for coping with copper stress. Overall, this study provides insights into the mechanisms of copper tolerance in A. citrulli and highlights the importance of specific genes in copper tolerance.

7.
Appl Microbiol Biotechnol ; 108(1): 276, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38536521

RESUMEN

The massive usage of phthalate esters (PAEs) has caused serious pollution. Bacterial degradation is a potential strategy to remove PAE contamination. So far, an increasing number of PAE-degrading strains have been isolated, and the catabolism of PAEs has been extensively studied and reviewed. However, the investigation into the bacterial PAE uptake process has received limited attention and remains preliminary. PAEs can interact spontaneously with compounds like peptidoglycan, lipopolysaccharides, and lipids on the bacterial cell envelope to migrate inside. However, this process compromises the structural integrity of the cells and causes disruptions. Thus, membrane protein-facilitated transport seems to be the main assimilation strategy in bacteria. So far, only an ATP-binding-cassette transporter PatDABC was proven to transport PAEs across the cytomembrane in a Gram-positive bacterium Rhodococcus jostii RHA1. Other cytomembrane proteins like major facilitator superfamily (MFS) proteins and outer membrane proteins in cell walls like FadL family channels, TonB-dependent transporters, and OmpW family proteins were only reported to facilitate the transport of PAEs analogs such as monoaromatic and polyaromatic hydrocarbons. The functions of these proteins in the intracellular transport of PAEs in bacteria await characterization and it is a promising avenue for future research on enhancing bacterial degradation of PAEs. KEY POINTS: • Membrane proteins on the bacterial cell envelope may be PAE transporters. • Most potential transporters need experimental validation.


Asunto(s)
Ácidos Ftálicos , Ácidos Ftálicos/metabolismo , Proteínas de Transporte de Membrana , Transportadoras de Casetes de Unión a ATP/metabolismo , Bacterias/metabolismo , Ésteres , Dibutil Ftalato/química , China
8.
Appl Environ Microbiol ; 90(2): e0195923, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38193681

RESUMEN

Propanethiol (PT) is a hazardous pollutant that poses risks to both the environment and human well-being. Pseudomonas putida S-1 has been identified as a microorganism capable of utilizing PT as its sole carbon source. However, the metabolic pathway responsible for PT degradation in P. putida S-1 has remained poorly understood, impeding its optimization and practical application. In this study, we investigated the catabolic network involved in PT desulfurization with P. putida S-1 and identified key gene modules crucial to this process. Notably, propanethiol oxidoreductase (PTO) catalyzes the initial degradation of PT, a pivotal step for P. putida S-1's survival on PT. PTO facilitates the oxidation of PT, resulting H2S, H2O2, and propionaldehyde (PA). Catalase-peroxidase catalyzes the conversion of H2O2 to oxygen and water, while PA undergoes gradual conversion to Succinyl-CoA, which is subsequently utilized in the tricarboxylic acid cycle. H2S is digested in a comprehensive desulfurization network where sulfide-quinone oxidoreductase (SQOR) predominantly converts it to sulfane sulfur. The transcriptome analysis suggests that sulfur can be finally converted to sulfite or sulfate and exported out of the cell. The PT degradation capacity of P. putida S-1 was enhanced by increasing the transcription level of PTO and SQOR genes in vivo.IMPORTANCEThis work investigated the PT catabolism pathway in Pseudomonas putida S-1, a microorganism capable of utilizing PT as the sole carbon source. Critical genes that control the initiation of PT degradation were identified and characterized, such as pto and sqor. By increasing the transcription level of pto and sqor genes in vivo, we have successfully enhanced the PT degradation efficiency and growth rate of P. putida S-1. This work does not only reveal a unique PT degradation pathway but also highlights the potential of enhancing the microbial desulfurization process in the bioremediation of thiol-contaminated environment.


Asunto(s)
Oxidorreductasas , Pseudomonas putida , Quinona Reductasas , Humanos , Oxidorreductasas/metabolismo , Pseudomonas putida/genética , Pseudomonas putida/metabolismo , Peróxido de Hidrógeno/metabolismo , Compuestos de Sulfhidrilo/metabolismo , Biodegradación Ambiental , Azufre/metabolismo , Carbono/metabolismo
9.
Nat Commun ; 14(1): 5894, 2023 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-37736772

RESUMEN

Neutrophils have a pathogenic function in inflammation via releasing pro-inflammatory mediators or neutrophil extracellular traps (NETs). However, their heterogeneity and pro-inflammatory mechanisms remain unclear. Here, we demonstrate that CXCR4hi neutrophils accumulate in the blood and inflamed skin in human psoriasis, and correlate with disease severity. Compared to CXCR4lo neutrophils, CXCR4hi neutrophils have enhanced NETs formation, phagocytic function, neutrophil degranulation, and overexpression of pro-inflammatory cytokines and chemokines in vitro. This is accompanied by a metabolic shift in CXCR4hi neutrophils toward glycolysis and lactate release, thereby promoting vascular permeability and remodeling. CXCR4 expression in neutrophils is dependent on CREB1, a transcription factor activated by TNF and CXCL12, and regulated by de novo synthesis. In vivo, CXCR4hi neutrophil infiltration amplifies skin inflammation, whereas blockade of CXCR4hi neutrophils through CXCR4 or CXCL12 inhibition leads to suppression of immune responses. In this work, our study identifies CREB1 as a critical regulator of CXCR4hi neutrophil development and characterizes the contribution of CXCR4hi neutrophils to vascular remodeling and inflammatory responses in skin.


Asunto(s)
Proteína de Unión a Elemento de Respuesta al AMP Cíclico , Dermatitis , Psoriasis , Animales , Humanos , Ratones , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/genética , Modelos Animales de Enfermedad , Inflamación , Neutrófilos , Psoriasis/genética , Receptores CXCR4/genética , Piel
10.
Chem Sci ; 14(32): 8570-8582, 2023 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-37593000

RESUMEN

While it is known that lipids play an essential role in regulating membrane protein structure and function, it remains challenging to identify specific protein-lipid interactions. Here, we present an innovative approach that combines native mass spectrometry (MS) and lipidomics to identify lipids retained by membrane proteins from natural lipid extracts. Our results reveal that the bacterial ammonia channel (AmtB) enriches specific cardiolipin (CDL) and phosphatidylethanolamine (PE) from natural headgroup extracts. When the two extracts are mixed, AmtB retains more species, wherein selectivity is tuned to bias headgroup selection. Using a series of natural headgroup extracts, we show TRAAK, a two-pore domain K+ channel (K2P), retains specific acyl chains that is independent of the headgroup. A brain polar lipid extract was then combined with the K2Ps, TRAAK and TREK2, to understand lipid specificity. More than a hundred lipids demonstrated affinity for each protein, and both channels were found to retain specific fatty acids and lysophospholipids known to stimulate channel activity, even after several column washes. Natural lipid extracts provide the unique opportunity to not only present natural lipid diversity to purified membrane proteins but also identify lipids that may be important for membrane protein structure and function.

11.
Microorganisms ; 11(7)2023 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-37512977

RESUMEN

Acidovorax citrulli, the causative agent of bacterial fruit blotch, can be divided into two main groups based on factors such as pathogenicity and host species preference. PilA is an important structural and functional component of type IV pili (T4P). Previous studies have found significant differences in pilA DNA sequences between group I and group II strains of A. citrulli. In this study, we characterized pilA in the group I strain pslb65 and the group II strain Aac5. pilA mutants, complementation strains, and cross-complementation strains were generated, and their biological phenotypes were analyzed to identify functional differences between pilA in the two groups. pilA deletion mutants (pslb65-ΔpilA and Aac5-ΔpilA) showed significantly reduced pathogenicity compared with the wild-type (WT) strains; pslb65-ΔpilA also completely lost twitching motility, whereas Aac5-ΔpilA only partially lost motility. In King's B medium, there were no significant differences in biofilm formation between pslb65-ΔpilA and WT pslb65, but Aac5-ΔpilA showed significantly reduced biofilm formation compared to WT Aac5. In M9 minimal medium, both mutants showed significantly lower biofilm formation compared to the corresponding WT strains, although biofilm formation was recovered in the complementation strains. The biofilm formation capacity was somewhat recovered in the cross-complementation strains but remained significantly lower than in the WT strains. The interspecies competitive abilities of pslb65-ΔpilA and Aac5-ΔpilA were significantly lower than in the WT strains; Aac5-ΔpilA was more strongly competitive than pslb65-ΔpilA, and the complementation strains recovered competitiveness to WT levels. Furthermore, the cross-complementation strains showed stronger competitive abilities than the corresponding WT strains. The relative expression levels of genes related to T4P and the type VI secretion system were then assessed in the pilA mutants via quantitative PCR. The results showed significant differences in the relative expression levels of multiple genes in pslb65-ΔpilA and Aac5-ΔpilA compared to the corresponding WT stains. This indicated the presence of specific differences in pilA function between the two A. citrulli groups, but the regulatory mechanisms involved require further study.

12.
Environ Res ; 235: 116666, 2023 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-37453507

RESUMEN

Dimethyl phthalate (DMP), diethyl phthalate (DEP), di-n-butyl phthalate (DBP), butyl benzyl phthalate (BBP), bis(2-ethylhexyl) phthalate (DEHP), and di-n-octyl phthalate (DOP) are hazardous chemicals listed as priority pollutants that disrupt endocrine systems. According to available reports, these six priority phthalate esters (PAEs) are considered the most polluting; however, no studies have been conducted on the efficient remediation of these PAEs. We therefore designed and constructed a synthetic bacterial consortium capable of the simultaneous and efficient degradation of six priority PAEs in minimal inorganic salt medium (MSM) and soil. The consortium comprised Glutamicibacter sp. ZJUTW, which demonstrates priority for degrading short-chain PAEs; Cupriavidus sp. LH1, which degrades phthalic acid (PA) and protocatechuic acid (PCA), intermediates of the PAE biodegradation process; and Gordonia sp. GZ-YC7, which efficiently degrades long-chain priority PAEs, including DEHP and DOP. In MSM containing the six mixed PAEs (250 mg/L each), the ZJUTW + YC + LH1 consortium completely degraded the four short-chain PAEs within 48 h, and DEHP (100%) and DOP (62.5%) within 72 h. In soil containing the six mixed PAEs (DMP, DEP, BBP, and DOP, 400 mg/kg each; DBP and DEHP, 500 mg/kg, each), the ZJUTW + YC + LH1 consortium completely degraded DMP, DEP, BBP, and DBP within 6 days, and 70.84% of DEHP and 66.24% of DOP within 2 weeks. The consortium efficiently degraded the six mixed PAEs in both MSM and soil. We thus believe that this synthetic microbial consortium is a strong candidate for the bioremediation of environments contaminated with mixed PAE pollutants.


Asunto(s)
Dietilhexil Ftalato , Contaminantes Ambientales , Ácidos Ftálicos , Ácidos Ftálicos/metabolismo , Dibutil Ftalato , Suelo , Ésteres
13.
Int J Biol Sci ; 19(11): 3395-3411, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37497003

RESUMEN

Dysregulated glucose metabolism is an important characteristic of psoriasis. Cytoskeletal protein keratin 17 (K17) is highly expressed in the psoriatic epidermis and contributes to psoriasis pathogenesis. However, whether K17 is involved in the dysregulated glucose metabolism of keratinocytes (KCs) in psoriasis remains unclear. In the present study, loss- and gain-of-function studies showed that elevated K17 expression was critically involved in glycolytic pathway activation in psoriatic KCs. The level of α-enolase (ENO1), a novel potent interaction partner of K17, was also elevated in psoriatic KCs. Knockdown of ENO1 by siRNA or inhibition of ENO1 activity by the inhibitor ENOBlock remarkably suppressed KCs glycolysis and proliferation. Moreover, ENO1 directly interacted with K17 and maintained K17-Ser44 phosphorylation to promote the nuclear translocation of K17, which promoted the transcription of the key glycolysis enzyme lactic dehydrogenase A (LDHA) and resulted in enhanced KCs glycolysis and proliferation in vitro. Finally, either inhibiting the expression and activation of ENO1 or repressing K17-Ser44 phosphorylation significantly alleviated the IMQ-induced psoriasis-like phenotype in vivo. These findings provide new insights into the metabolic profile of psoriatic KCs and suggest that modulation of the ENO1-K17-LDHA axis is a potentially innovative therapeutic approach to psoriasis.


Asunto(s)
Queratina-17 , Psoriasis , Humanos , Proliferación Celular/genética , Glucosa/metabolismo , Queratina-17/genética , Queratina-17/metabolismo , Queratinocitos/metabolismo , Fosfopiruvato Hidratasa/genética , Fosfopiruvato Hidratasa/metabolismo
14.
Arch Microbiol ; 205(8): 299, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37525014

RESUMEN

Industrial tobacco waste was mainly treated via a reconstituted tobacco process using the paper-making method, which involves aqueous concentrated tobacco waste extract (cTWE) fermentation (aging). The fermentation was done to improve the quality of reconstituted tobacco. However, cTWE is a multi-stress environment that is characterized by low pH (about 4), as well as high sugar (above 150 g/L) and nicotine (above 15 g/L) content. In this study, a specific selection strategy was used to successfully isolate multi-stress-resistant bacterial or fungal strains, that exhibited positive effects on cTWE fermentation, thereby improving the quality of final products. A potential strain Zygosaccharomyces parabailii MC-5K3 was used for the bioaugmentation of cTWE fermentation and it significantly influenced the microbial diversity of the fermented cTWE. Zygosaccharomyces was observed to be the only dominant fungal genus instead of some pathogenic bacterial genera, with an abundance of over 95% after four days, and still more than 80% after a week. Meanwhile, metabolomics profiling showed significant concentration decrease with regard to some flavor-improving relative metabolites, such as 3-hydroxybenzoic acid (log2FC = - 5.25) and sorbitol (log2FC = - 5.54). This finding is extrapolated to be the key influence factor on the quality of the fermented cTWE. The correlation analysis also showed that the alterations in microbial diversity in the fermented cTWE led to some important differential metabolite changes, which finally improved various properties of tobacco products.

15.
Front Bioeng Biotechnol ; 11: 1183197, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37152642

RESUMEN

Background: Cisplatin (CIS) is widely used to treat various cancers but can cause ototoxicity and sensory hair cell loss in the inner ear. Copper induces an excessive production of reactive oxygen species (ROS) in hair cells, leading to the development of various antioxidants. Methods and results: This study aimed to evaluate the potential antioxidant properties of curcumin (CUR) in the inner ear organ of corti-1 cells (OC1) and animal models (zebrafish and guinea pigs). Graphene oxide quantum dots (GOQDs) enabled CUR to penetrate the round window membrane (RWM) and maintain the concentration in the perilymph after inner ear administration. The results showed that CUR/GOQDs had favorable biocompatibility and strongly affected ROS generation induced by CIS in OC1 cells. DCFHDA Green staining demonstrated that CUR/GOQDs successfully reversed the decrease in mitochondrial membrane potential induced by CIS in vitro and rescued cells from early cuproptosis, which was confirmed by FDX1 staining. Additionally, the experiment found that CUR decreased the expression of cuproptosis proteins (FDX1, LIAS, and LIPT1) and increased the expression of the Bcl-2 protein. Conclusion: The results demonstrate that CUR/GOQDs is a promising therapeutic agent that can prevent CIS-induced ototoxicity by blocking the cuproptosis signal pathway.

16.
J Invest Dermatol ; 143(11): 2153-2162.e12, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37209865

RESUMEN

Obesity is associated with an increased risk of atopic dermatitis (AD) and may accelerate its development. Keratinocyte dysfunction has been observed in obesity-related skin diseases, including psoriasis and acanthosis nigricans, but is not fully understood in AD. In this study, we found that high-fat diet-induced obesity exacerbated AD-like dermatitis in mice, with elevated inflammatory molecules and increased CD36-SREBP1-related fatty acid accumulation in the lesional skin. Blocking CD36 or SREBP1 with chemical inhibitors effectively alleviated AD-like inflammation, decreased fatty acid accumulation, and downregulated TSLP expression in obese calcipotriol (MC903)-treated mice. Moreover, palmitic acid treatment induced TSLP overexpression in keratinocytes through the activation of the CD36-SREBP1 signaling pathway. The chromatin immunoprecipitation assay further revealed increased binding of SREBP1 to the TSLP promoter region. Our findings provide compelling evidence that obesity triggers the activation of the CD36-SREBP1-TSLP axis in keratinocytes, leading to epidermal lipid disorders and the aggravation of AD-like inflammation. By targeting CD36 or SREBP1, future combination therapies or modified treatment strategies could be developed to help manage patients with both obesity and AD.

17.
Appl Microbiol Biotechnol ; 107(12): 3899-3909, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37148336

RESUMEN

Sakuranetin is a plant-natural product, which has increasingly been utilized in cosmetic and pharmaceutical industries for its extensive anti-inflammatory, anti-tumor, and immunomodulatory effects. Sakuranetin was mostly produced by extraction technology from plants, which is limited to natural conditions and biomass supply. In this study, a de novo biosynthesis pathway of sakuranetin by engineered S. cerevisiae was constructed. After a series of heterogenous gene integration, a biosynthetic pathway of sakuranetin from glucose was successfully constructed in S. cerevisiae whose sakuranetin yield reached only 4.28 mg/L. Then, a multi-module metabolic engineering strategy was applied for improving sakuranetin yield in S. cerevisiae: (1) adjusting the copy number of sakuranetin synthesis genes, (2) removing the rate-limiting factor of aromatic amino acid pathway and optimizing the synthetic pathway of aromatic amino acids to enhance the supply of carbon flux for sakuranetin, and (3) introducing acetyl-CoA carboxylase mutants ACC1S659A,S1157A and knocking out YPL062W to strengthen the supply of malonyl-CoA which is another synthetic precursor of sakuranetin. The resultant mutant S. cerevisiae exhibited a more than tenfold increase of sakuranetin titer (50.62 mg/L) in shaking flasks. Furthermore, the sakuranetin titer increased to 158.65 mg/L in a 1-L bioreactor. To our knowledge, it is the first report on the sakuranetin de novo synthesis from glucose in S. cerevisiae. KEY POINTS: • De novo biosynthesis of sakuranetin was constructed by engineered S. cerevisiae. • Sakuranetin production was enhanced by multi-module metabolic engineering strategy. • It is the first report on the sakuranetin de novo synthesis in S. cerevisiae.


Asunto(s)
Glucosa , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Glucosa/metabolismo , Flavonoides/metabolismo , Ingeniería Metabólica
18.
Microorganisms ; 11(3)2023 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-36985340

RESUMEN

Bacterial fruit blotch (BFB), caused by Acidovorax citrulli, severely damages watermelon, melon, and other cucurbit crops worldwide. Nitrogen, one of the most important limiting elements in the environment, is necessary for the growth and reproduction of bacteria. As a nitrogen-regulating gene, ntrC plays an important role in maintaining bacterial nitrogen utilization and biological nitrogen fixation. However, the role of ntrC has not been determined for A. citrulli. In this study, we constructed a ntrC deletion mutant and a corresponding complementary strain in the background of the A. citrulli wild-type strain, Aac5. Through phenotype assays and qRT-PCR analysis, we investigated the role of ntrC in A. citrulli in nitrogen utilization, stress tolerance, and virulence against watermelon seedlings. Our results showed that the A. citrulli Aac5 ntrC deletion mutant lost the ability to utilize nitrate. The ntrC mutant strain also exhibited significantly decreased virulence, in vitro growth, in vivo colonization ability, swimming motility, and twitching motility. In contrast, it displayed significantly enhanced biofilm formation and tolerance to stress induced by oxygen, high salt, and copper ions. The qRT-PCR results showed that the nitrate utilization gene nasS; the Type III secretion system-related genes hrpE, hrpX, and hrcJ; and the pili-related gene pilA were significantly downregulated in the ntrC deletion mutant. The nitrate utilization gene nasT, and the flagellum-related genes flhD, flhC, fliA, and fliC were significantly upregulated in the ntrC deletion mutant. The expression levels of ntrC gene in the MMX-q and XVM2 media were significantly higher than in the KB medium. These results suggest that the ntrC gene plays a pivotal role in the nitrogen utilization, stress tolerance, and virulence of A. citrulli.

19.
Food Chem ; 417: 135786, 2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-36921365

RESUMEN

This study aimed to systematically investigate the changes in peel color, physicochemical characteristics, textural properties, and peel ultrastructure between CaCl2-treated and water-soaked passion fruit under short-term storage at room temperature (20 °C) for eight days. The fruit peel was further analyzed and compared for the differences in calmodulin (CaM) gene expression between the two groups. The data were analyzed using principal component analysis. The results confirmed that CaCl2 treatment effectively maintained the appearance and color of passion fruit, inhibited peel browning, and improved fruit quality. The treatment had an effect on maintaining the physiological properties of passion fruit parenchyma, effectively delayed the passion fruit senescence, and kept the structural integrity of the fruit peel. The relative expression of PeCaM gene in the CaCl2-treated fruit peels was higher than that of the control peels. The Ca2+ stimulated the relative expression of the PeCaM gene, which delayed the senescence of passion fruit.


Asunto(s)
Frutas , Passiflora , Frutas/química , Cloruro de Calcio , Passiflora/química
20.
Plant Dis ; 107(6): 1839-1846, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36444141

RESUMEN

Watermelon diseases caused by pathogenic bacteria were endemic in Liaoning and Jilin Provinces from 2019 to 2020 in China, resulting in serious economic losses to the watermelon industry. This study characterized 56 strains isolated from symptomatic watermelon leaves collected from Liaoning and Jilin Provinces. Through morphological observation, 16S rRNA and gyrB sequence analysis, and BIOLOG profiles, the pathogen was identified as Pseudomonas syringae. In China, the watermelon disease caused by P. syringae was reported for the first time. The multilocus sequence analysis showed that the isolated strains belonged to three different clades within P. syringae phylogroup 2. Interestingly, most of them (79%) belonged to clade 2a, 14% were clade 2b, and 7% were clade 2d. This indicates that bacterial leaf spot outbreaks of watermelon in China were caused by multiple sources and mainly by P. syringae clade 2a.


Asunto(s)
Citrullus , Citrullus/genética , ARN Ribosómico 16S/genética , Enfermedades de las Plantas/microbiología , Filogenia , Pseudomonas syringae , China
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA