RESUMEN
Through lettuce potting experiments, the effects of different types of biochar (apple branch, corn straw, and modified sorghum straw biochar with phosphoric acid modification) on lettuce growth under tetracycline (TC) and copper (Cu) co-pollution were investigated. The results showed that compared with those under CK, the addition of biochar treatment significantly increased the plant height, root length, shoot fresh weight, and root fresh weight of lettuce (P < 0.05). The addition of different biochars significantly increased the nitrate nitrogen, chlorophyll, and soluble protein content in lettuce physiological indicators to varying degrees, while also significantly decreasing the levels of malondialdehyde, proline content, and catalase activity. The effects of biochar on lettuce physiological indicators were consistent during both the seedling and mature stages. Compared with those in CK, the addition of biochar resulted in varying degrees of reduction in the TC and Cu contents of both the aboveground and underground parts of lettuce. The aboveground TC and Cu levels decreased by 2.49%-92.32% and 12.79%-36.47%, respectively. The underground TC and Cu levels decreased by 12.53%-55.64% and 22.41%-42.29%, respectively. Correlation analysis showed that nitrate nitrogen, chlorophyll, and soluble protein content of lettuce were negatively correlated with TC content, whereas malondialdehyde, proline content, and catalase activity were positively correlated with TC content. The resistance genes of lettuce were positively correlated with TC content (P < 0.05). In general, modified biochar was found to be more effective in improving lettuce growth quality and reducing pollutant accumulation compared to unmodified biochar, with modified sorghum straw biochar showing the best remediation effect.
Asunto(s)
Contaminantes Ambientales , Contaminantes del Suelo , Cobre , Lactuca , Contaminantes Ambientales/análisis , Suelo , Catalasa , Nitratos/análisis , Antibacterianos , Tetraciclina/análisis , Carbón Orgánico , Contaminantes del Suelo/análisis , Clorofila/análisis , Malondialdehído , Nitrógeno/análisis , ProlinaRESUMEN
Potential health risks related to environmental endocrine disruptors (EEDs) have aroused research hotspots at the forefront of water treatment technologies. Herein, nitrogen-doped titanium dioxide/schwertmannite nanocomposites (N-TiO2/SCH) have been successfully developed as heterogeneous catalysts for the degradation of typical EEDs via photo-Fenton processes. Due to the sustainable Fe(III)/Fe(II) conversion induced by photoelectrons, as-prepared N-TiO2/SCH nanocomposites exhibit much enhanced efficiency for the degradation of bisphenol A (BPA; ca. 100% within 60 min under visible irradiation) in a wide pH range of 3.0-7.8, which is significantly higher than that of the pristine schwertmannite (ca. 74.5%) or N-TiO2 (ca. 10.8%). In this photo-Fenton system, the efficient degradation of BPA is mainly attributed to the oxidation by hydroxyl radical (â¢OH) and singlet oxygen (1O2). Moreover, the possible catalytic mechanisms and reaction pathway of BPA degradation are systematically investigated based on analytical and photoelectrochemical analyses. This work not only provides a feasible means for the development of novel heterogeneous photo-Fenton catalysts, but also lays a theoretical foundation for the potential application of mineral-based materials in wastewater treatment.
Asunto(s)
Compuestos de Bencidrilo , Compuestos de Hierro , Nanocompuestos , Nitrógeno , Fenoles , Titanio , Contaminantes Químicos del Agua , Titanio/química , Compuestos de Bencidrilo/química , Fenoles/química , Nanocompuestos/química , Contaminantes Químicos del Agua/química , Nitrógeno/química , Catálisis , Hierro/química , Peróxido de Hidrógeno/química , Disruptores Endocrinos/química , Purificación del Agua/métodosRESUMEN
Novel magnetic Ag@RF@Fe3O4 core-satellite (MCS) nanocomposites were prepared through in situ photoreduction upon bridging Fe(III) and Ag+ via hydroxyl groups in resorcinol formaldehyde (RF) resin by virtue of the coordination effect. The catalytic activity of MCS nanocomposites was evaluated based on catalytic 4-nitrophenol (4-NP) reduction with NaBH4 as the reducing agent. It was noteworthy that the MCS-3 was beneficial to obtain a superior reaction rate constant of 2.27 min-1 and a TOF up to 72.7 h-1. Moreover, the MCS could be easily recovered by applying an external magnetic field and was reused for five times without significantly decrease in catalytic activity. Kinetic and thermodynamic study revealed that catalytic 4-NP reduction using MCS nanocatalysts obeyed the Langmuir-Hinshelwood mechanism and was controlled by the diffusion rate of substrates. Overall, the immobilization of ultra-fine Ag nanoparticles and the extremely negative potentials around MCS nanocomposites, which were effective for the diffusion of reactants, synergistically accelerated the catalytic reduction reactions.