Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros




Base de datos
Asunto de la revista
Intervalo de año de publicación
1.
BMC Genomics ; 24(1): 194, 2023 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-37046216

RESUMEN

BACKGROUND: Maize has many kernel colors, from white to dark black. However, research on the color and nutritional quality of the different varieties is limited. The color of the maize grain is an important characteristic. Colored maize is rich in nutrients, which have received attention for their role in diet-related chronic diseases and have different degrees of anti-stress protection for animal and human health. METHODS: A comprehensive metabolome (LC-MS/MS) and transcriptome analysis was performed in this study to compare different colored maize varieties from the perspective of multiple recombination in order to study the nutritional value of maize with different colors and the molecular mechanism of color formation. RESULTS: Maize kernels with diverse colors contain different types of health-promoting compounds, highlighting that different maize varieties can be used as functional foods according to human needs. Among them, red-purple and purple-black maize contain more flavonoids than white and yellow kernels. Purple-black kernels have a high content of amino acids and nucleotides, while red-purple kernels significantly accumulate sugar alcohols and lipids. CONCLUSION: Our study can provide insights for improving people's diets and provide a theoretical basis for the study of food structure for chronic diseases.


Asunto(s)
Transcriptoma , Zea mays , Animales , Humanos , Zea mays/metabolismo , Cromatografía Liquida , Espectrometría de Masas en Tándem , Perfilación de la Expresión Génica , Color
2.
Sci Rep ; 6: 29843, 2016 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-27435114

RESUMEN

Maize exhibits a wide range of heterotic traits, but the molecular basis of heterosis at the reproductive stage has seldom been exploited. Leaf senescence is a degenerative process which affects crop yield and quality. In this study, we observed significantly delayed ear leaf senescence in the reciprocal hybrids of B73/Mo17 and Zheng58/Chang7-2 after silking, and all the hybrids displayed larger leaf areas and higher stems with higher yields. Our time-course transcriptome analysis identified 2,826 differentially expressed genes (DEGs) between two parental lines (PP-DEGs) and 2,328 DEGs between parental lines and the hybrid (PH-DEGs) after silking. Notably, several senescence promoting genes (ZmNYE1, ZmORE1, ZmWRKY53 and ZmPIFs) exhibited underdominant expression patterns in the hybrid, whereas putative photosynthesis and carbon-fixation (ZmPEPC)-associated, starch biosynthetic (ZmAPS1, ZmAPL), gibberellin biosynthetic genes (ZmGA20OX, ZmGA3OX) expressed overdominantly. We also identified 86 transcription factors from PH-DEGs, some of which were known to regulate senescence, stress and metabolic processes. Collectively, we demonstrate a molecular association of the regulations of both ear leaf senescence/stress response and photosynthesis/metabolism with heterosis at the late developmental stage. This finding not only extends our understanding to the molecular basis of maize heterosis but also provides basic information for molecular breeding.


Asunto(s)
Vigor Híbrido/genética , Fotosíntesis/genética , Hojas de la Planta/genética , Zea mays/genética , Perfilación de la Expresión Génica/métodos , Regulación de la Expresión Génica de las Plantas , Ontología de Genes , Genes de Plantas/genética , Hibridación Genética , Fenotipo , Fitomejoramiento/métodos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Reproducción/genética , Factores de Tiempo , Zea mays/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA