Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 203
Filtrar
1.
Front Plant Sci ; 15: 1390603, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38911983

RESUMEN

Rice, a critical staple on a global scale, faces escalating challenges in yield preservation due to the rising prevalence of abiotic and biotic stressors, exacerbated by frequent climatic fluctuations in recent years. Moreover, the scorching climate prevalent in the rice-growing regions of South China poses obstacles to the cultivation of good-quality, heavy-grain varieties. Addressing this dilemma requires the development of resilient varieties capable of withstanding multiple stress factors. To achieve this objective, our study employed the broad-spectrum blast-resistant line Digu, the brown planthopper (BPH)-resistant line ASD7, and the heavy-grain backbone restorer lines Fuhui838 (FH838) and Shuhui527 (SH527) as parental materials for hybridization and multiple crossings. The incorporation of molecular markers facilitated the rapid pyramiding of six target genes (Pi5, Pita, Pid2, Pid3, Bph2, and Wxb ). Through a comprehensive evaluation encompassing blast resistance, BPH resistance, cold tolerance, grain appearance, and quality, alongside agronomic trait selection, a promising restorer line, Guihui5501 (GH5501), was successfully developed. It demonstrated broad-spectrum resistance to blast, exhibiting a resistance frequency of 77.33% against 75 artificially inoculated isolates, moderate resistance to BPH (3.78 grade), strong cold tolerance during the seedling stage (1.80 grade), and characteristics of heavy grains (1,000-grain weight reaching 35.64 g) with good grain quality. The primary rice quality parameters for GH5501, with the exception of alkali spreading value, either met or exceeded the second-grade national standard for premium edible rice varieties, signifying a significant advancement in the production of good-quality heavy-grain varieties in the southern rice-growing regions. Utilizing GH5501, a hybrid combination named Nayou5501, characterized by high yield, good quality, and resistance to multiple stresses, was bred and received approval as a rice variety in Guangxi in 2021. Furthermore, genomic analysis with gene chips revealed that GH5501 possessed an additional 20 exceptional alleles, such as NRT1.1B for efficient nitrogen utilization, SKC1 for salt tolerance, and STV11 for resistance to rice stripe virus. Consequently, the restorer line GH5501 could serve as a valuable resource for the subsequent breeding of high-yielding, good-quality, and stress-tolerant hybrid rice varieties.

2.
Neurobiol Dis ; 198: 106549, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38830476

RESUMEN

BACKGROUND: Multiple system atrophy (MSA) and Parkinson's disease (PD) are neurodegenerative disorders characterized by α-synuclein pathology, disrupted iron homeostasis and impaired neurochemical transmission. Considering the critical role of iron in neurotransmitter synthesis and transport, our study aims to identify distinct patterns of whole-brain iron accumulation in MSA and PD, and to elucidate the corresponding neurochemical substrates. METHODS: A total of 122 PD patients, 58 MSA patients and 78 age-, sex-matched health controls underwent multi-echo gradient echo sequences and neurological evaluations. We conducted voxel-wise and regional analyses using quantitative susceptibility mapping to explore MSA or PD-specific alterations in cortical and subcortical iron concentrations. Spatial correlation approaches were employed to examine the topographical alignment of cortical iron accumulation patterns with normative atlases of neurotransmitter receptor and transporter densities. Furthermore, we assessed the associations between the colocalization strength of neurochemical systems and disease severity. RESULTS: MSA patients exhibited increased susceptibility in the striatal, midbrain, cerebellar nuclei, as well as the frontal, temporal, occipital lobes, and anterior cingulate gyrus. In contrast, PD patients displayed elevated iron levels in the left inferior occipital gyrus, precentral gyrus, and substantia nigra. The excessive iron accumulation in MSA or PD correlated with the spatial distribution of cholinergic, noradrenaline, glutamate, serotonin, cannabinoids, and opioid neurotransmitters, and the degree of this alignment was related to motor deficits. CONCLUSIONS: Our findings provide evidence of the interaction between iron accumulation and non-dopamine neurotransmitters in the pathogenesis of MSA and PD, which inspires research on potential targets for pharmacotherapy.


Asunto(s)
Atrofia de Múltiples Sistemas , Enfermedad de Parkinson , Humanos , Atrofia de Múltiples Sistemas/metabolismo , Atrofia de Múltiples Sistemas/diagnóstico por imagen , Atrofia de Múltiples Sistemas/patología , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/diagnóstico por imagen , Enfermedad de Parkinson/patología , Masculino , Femenino , Persona de Mediana Edad , Anciano , Encéfalo/metabolismo , Encéfalo/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Hierro/metabolismo , Neurotransmisores/metabolismo , Mapeo Encefálico/métodos
3.
J Neurosci Res ; 102(5): e25357, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38803227

RESUMEN

Aging is widely acknowledged as the primary risk factor for brain degeneration, with Parkinson's disease (PD) tending to follow accelerated aging trajectories. We aim to investigate the impact of structural brain aging on the temporal dynamics of a large-scale functional network in PD. We enrolled 62 PD patients and 32 healthy controls (HCs). The level of brain aging was determined by calculating global and local brain age gap estimates (G-brainAGE and L-brainAGE) from structural images. The neural network activity of the whole brain was captured by identifying coactivation patterns (CAPs) from resting-state functional images. Intergroup differences were assessed using the general linear model. Subsequently, a spatial correlation analysis between the L-brainAGE difference map and CAPs was conducted to uncover the anatomical underpinnings of functional alterations. Compared to HCs (-3.73 years), G-brainAGE was significantly higher in PD patients (+1.93 years), who also exhibited widespread elevation in L-brainAGE. G-brainAGE was correlated with disease severity and duration. PD patients spent less time in CAPs involving activated default mode and the fronto-parietal network (DMN-FPN), as well as the sensorimotor and salience network (SMN-SN), and had a reduced transition frequency from other CAPs to the DMN-FPN and SMN-SN CAPs. Furthermore, the pattern of localized brain age acceleration showed spatial similarities with the SMN-SN CAP. Accelerated structural brain aging in PD adversely affects brain function, manifesting as dysregulated brain network dynamics. These findings provide insights into the neuropathological mechanisms underlying neurodegenerative diseases and imply the possibility of interventions for modifying PD progression by slowing the brain aging process.


Asunto(s)
Envejecimiento , Encéfalo , Imagen por Resonancia Magnética , Enfermedad de Parkinson , Humanos , Enfermedad de Parkinson/fisiopatología , Enfermedad de Parkinson/diagnóstico por imagen , Enfermedad de Parkinson/patología , Masculino , Femenino , Persona de Mediana Edad , Envejecimiento/fisiología , Envejecimiento/patología , Encéfalo/diagnóstico por imagen , Encéfalo/fisiopatología , Anciano , Red Nerviosa/diagnóstico por imagen , Red Nerviosa/fisiopatología
4.
Brain Imaging Behav ; 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38809332

RESUMEN

The high and increasing proportion of single-parent families is considered a risk factor associated with various childhood trauma experiences. Consequently, concerns have been raised regarding the potential long-term effects of the childhood single-parent family structure. In this study, we employed advanced magnetic resonance imaging technology, including morphometric similarity mapping, functional connectivity density, and network-based analysis, to investigate brain connectivity and behavioral differences among young adults who were raised in single-parent families. Our study also aimed to explore the relationship between these differences and childhood trauma experiences. The results showed that individuals who grew up in single-parent families exhibited higher levels of anxiety, depression, and harm-avoidant personality. The multimodal MRI analysis further showed differences in regional and network-based connectivity properties in the single-parent family group, including increased functional connectivity density in the left inferior parietal lobule, enhanced cortical structural connectivity between the left isthmus cingulate cortex and peri-calcarine cortex, and an increase in temporal functional connectivity. Moreover, elevated levels of anxiety and depression, along with heightened functional connectivity density in the left inferior parietal lobule and increased temporal functional connectivity, were found to be correlated with a greater number of childhood trauma experiences. Through analyzing multiple data patterns, our study provides objective neuropsychobiological evidence for the enduring impact of childhood single-parent family structure on psychiatric vulnerability in adulthood.

5.
J Mater Chem B ; 12(16): 4018-4028, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38578014

RESUMEN

On-demand controlled drug release holds great promise for cancer therapy. Light-degradable nanocarriers have gained increasing attention for designing controllable drug delivery systems owing to their spatiotemporally controllable properties. Herein, a highly luminescent and light-degradable nanocarrier is constructed by intercalating glutathione-capped gold nanoclusters (AuNCs) into zeolitic imidazolate framework-8 (ZIF-8) via competitive coordination assembly, named AuNC@ZIF-8, for light-triggered drug release. Glutathione-capped AuNCs and 2-methylimidazole (MIm) competitively coordinated with Zn2+ to form AuNC@ZIF-8 using a one step process in an aqueous solution. Specifically, the obtained AuNC@ZIF-8 has a high quantum yield of 52.96% and displays a distinctive property of photolysis. Competitive coordination interactions within AuNC@ZIF-8 were evidenced by X-ray diffraction and X-ray photoelectron spectroscopy, in which Zn2+ strongly coordinated with the N of MIm and weakly coordinated with the carboxyl/amino groups in the glutathione of AuNCs. Under light irradiation, the Au-S bond in AuNCs breaks, enhancing the coordination ability between carboxyl/amino groups and Zn2+. This collapses the crystal structure of AuNC@ZIF-8 and causes subsequent fluorescence quenching. Additionally, AuNC@ZIF-8 is successfully employed as a luminescent nanocarrier of anticancer drugs to form drug-AuNC@ZIF-8, in which three typical anticancer drugs are selected due to different coordination interactions. The obtained smart drug-AuNC@ZIF-8 can be effectively internalized into HeLa cells and degraded in response to blue light, with negligible dark cytotoxicity and high light cytotoxicity. This study highlights the crucial role of competitive coordination interactions in synthesizing functional materials with fluorescence efficiency and photolytic properties.


Asunto(s)
Liberación de Fármacos , Oro , Luz , Nanopartículas del Metal , Estructuras Metalorgánicas , Oro/química , Estructuras Metalorgánicas/química , Estructuras Metalorgánicas/farmacología , Humanos , Nanopartículas del Metal/química , Antineoplásicos/química , Antineoplásicos/farmacología , Células HeLa , Supervivencia Celular/efectos de los fármacos , Portadores de Fármacos/química , Tamaño de la Partícula , Propiedades de Superficie , Doxorrubicina/química , Doxorrubicina/farmacología
6.
J Infect ; 88(5): 106151, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38582127

RESUMEN

BACKGROUND: Immunological non-responders (INRs) among people living with HIV have inherently higher mortality and morbidity rates. The underlying immunological mechanisms whereby failure of immune reconstitution occurs in INRs require elucidation. METHOD: HIV-1 DNA and HIV-1 cell-associated RNA (CA-HIV RNA) quantifications were conducted via RT-qPCR. Transcriptome sequencing (RNA-seq), bioinformatics, and biological verifications were performed to discern the crosstalk between host and viral factors. Flow cytometry was employed to analyze cellular activation, proliferation, and death. RESULTS: HIV-1 DNA and CA-HIV RNA levels were observed to be significantly higher in INRs compared to immunological responders (IRs). Evaluation of CD4/CD8 ratios showed a significantly negative correlation with HIV-1 DNA in IRs, but not in INRs. Bioinformatics analyses and biological verifications showed IRF7/INF-α regulated antiviral response was intensified in INRs. PBMCs of INRs expressed significantly more HIV integrase-mRNA (p31) than IRs. Resting (CD4+CD69- T-cells) and activated (CD4+CD69+ T-cells) HIV-1 reservoir harboring cells were significantly higher in INRs, with the co-occurrence of significantly higher cellular proliferation and cell death in CD4+ T-cells of INRs. CONCLUSION: In INRs, the systematic crosstalk between the HIV-1 reservoir and host cells tends to maintain a persistent antiviral response-associated inflammatory environment, which drives aberrant cellular activation, proliferation, and death of CD4+ T-cells.


Asunto(s)
Proliferación Celular , Infecciones por VIH , VIH-1 , Factor 7 Regulador del Interferón , Humanos , Infecciones por VIH/inmunología , Infecciones por VIH/virología , VIH-1/genética , VIH-1/fisiología , Transcriptoma , Muerte Celular , Masculino , ARN Viral , Homeostasis , Adulto , ADN Viral/genética , Femenino , Linfocitos T CD4-Positivos/inmunología , Persona de Mediana Edad , Linfocitos T/inmunología , Activación de Linfocitos , Relación CD4-CD8 , Carga Viral
7.
Exp Cell Res ; 437(1): 113994, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38479704

RESUMEN

m6A modification has been studied in tumors, but its role in host anti-tumor immune response and TAMs polarization remains unclear. The fatty acid oxidation (FAO) process of TAMs is also attracting attention. A co-culture model of colorectal cancer (CRC) cells and macrophages was used to simulate the tumor microenvironment. Expression changes of m6A demethylase genes FTO and ALKBH5 were screened. ALKBH5 was further investigated. Gain-of-function experiments were conducted to study ALKBH5's effects on macrophage M2 polarization, CRC cell viability, proliferation, migration, and more. Me-RIP and Actinomycin D assays were performed to study ALKBH5's influence on CPT1A, the FAO rate-limiting enzyme. AMP, ADP, and ATP content detection, OCR measurement, and ECAR measurement were used to explore ALKBH5's impact on macrophage FAO level. Rescue experiments validated ALKBH5's mechanistic role in macrophage M2 polarization and CRC malignant development. In co-culture, CRC cells enhance macrophage FAO and suppress m6A modification in M2 macrophages. ALKBH5 was selected as the gene for further investigation. ALKBH5 mediates CPT1A upregulation by removing m6A modification, promoting M2 macrophage polarization and facilitating CRC development. These findings indicate that ALKBH5 enhances fatty acid metabolism and M2 polarization of macrophages by upregulating CPT1A, thereby promoting CRC development.


Asunto(s)
Neoplasias Colorrectales , Macrófagos , Humanos , Regulación hacia Arriba/genética , Macrófagos/metabolismo , Neoplasias Colorrectales/patología , Ácidos Grasos/metabolismo , Microambiente Tumoral , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/genética , Desmetilasa de ARN, Homólogo 5 de AlkB/genética , Desmetilasa de ARN, Homólogo 5 de AlkB/metabolismo
8.
Protein Cell ; 15(6): 419-440, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38437016

RESUMEN

Tumor-resident microbiota in breast cancer promotes cancer initiation and malignant progression. However, targeting microbiota to improve the effects of breast cancer therapy has not been investigated in detail. Here, we evaluated the microbiota composition of breast tumors and found that enterotoxigenic Bacteroides fragilis (ETBF) was highly enriched in the tumors of patients who did not respond to taxane-based neoadjuvant chemotherapy. ETBF, albeit at low biomass, secreted the toxic protein BFT-1 to promote breast cancer cell stemness and chemoresistance. Mechanistic studies showed that BFT-1 directly bound to NOD1 and stabilized NOD1 protein. NOD1 was highly expressed on ALDH+ breast cancer stem cells (BCSCs) and cooperated with GAK to phosphorylate NUMB and promote its lysosomal degradation, thereby activating the NOTCH1-HEY1 signaling pathway to increase BCSCs. NOD1 inhibition and ETBF clearance increase the chemosensitivity of breast cancer by impairing BCSCs.


Asunto(s)
Bacteroides fragilis , Neoplasias de la Mama , Resistencia a Antineoplásicos , Células Madre Neoplásicas , Proteína Adaptadora de Señalización NOD1 , Humanos , Proteína Adaptadora de Señalización NOD1/metabolismo , Proteína Adaptadora de Señalización NOD1/genética , Neoplasias de la Mama/patología , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/microbiología , Neoplasias de la Mama/genética , Femenino , Bacteroides fragilis/metabolismo , Bacteroides fragilis/genética , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Toxinas Bacterianas/metabolismo , Toxinas Bacterianas/genética , Animales , Ratones , Línea Celular Tumoral , Metaloendopeptidasas
9.
Clin Epigenetics ; 16(1): 39, 2024 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-38461320

RESUMEN

Alzheimer's disease (AD) has a complex pathogenesis, and multiple studies have indicated that histone post-translational modifications, especially acetylation, play a significant role in it. With the development of mass spectrometry and proteomics, an increasing number of novel HPTMs, including lactoylation, crotonylation, ß-hydroxybutyrylation, 2-hydroxyisobutyrylation, succinylation, and malonylation, have been identified. These novel HPTMs closely link substance metabolism to gene regulation, and an increasing number of relevant studies on the relationship between novel HPTMs and AD have become available. This review summarizes the current advances and implications of novel HPTMs in AD, providing insight into the deeper pathogenesis of AD and the development of novel drugs.


Asunto(s)
Enfermedad de Alzheimer , Histonas , Humanos , Histonas/metabolismo , Enfermedad de Alzheimer/genética , Metilación de ADN , Procesamiento Proteico-Postraduccional , Acetilación
10.
Sci Rep ; 14(1): 4400, 2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38388520

RESUMEN

With the rapid development of the economy, people have increasingly higher requirements for the comfort of living spaces, and the result is the sharp increase in building energy consumption. Several design parameters influence living space comfort and building energy efficiency. Since the same design standard can include different design parameter combinations, synergic relationships may exist between these criteria for one case. Identifying these synergic relationships requires an inverse problem approach. This paper established a model by combining an improved genetic algorithm (IGA) and numerical calculation to determine the synergic design parameter relationships (e.g. the thermophysical building material properties and energy-saving factors). For [Formula: see text], the shading coefficient significantly influenced the linear function between the thermal conductivity and insulation thickness. In this case, the insulation thickness was exponentially related to the shading coefficient, while the thermal conductivity of the insulation material significantly impacted the synergic relationship. For [Formula: see text], the insulation thickness was a segmented function of the shading coefficient. The results verified that the proposed model was efficient and reliable for identifying the synergic relationships between energy-saving parameters. In engineering applications, designers can select the optimal design parameter combination based on the relationship curve between the parameters in this paper according to the local market conditions and specific design requirements.

11.
Brain Struct Funct ; 229(4): 843-852, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38347222

RESUMEN

Neuromelanin hypopigmentation within substantia nigra pars compacta (SNc) reflects the loss of pigmented neurons, which in turn contributes to the dysfunction of the nigrostriatal and striato-cortical pathways in Parkinson's disease (PD). Our study aims to investigate the relationships between SN degeneration manifested by neuromelanin reduction, functional connectivity (FC) among large-scale brain networks, and motor impairment in PD. This study included 68 idiopathic PD patients and 32 age-, sex- and education level-matched healthy controls who underwent neuromelanin-sensitive magnetic resonance imaging (MRI), functional MRI, and motor assessments. SN integrity was measured using the subregional contrast-to-noise ratio calculated from neuromelanin-sensitive MRI. Resting-state FC maps were obtained based on the independent component analysis. Subsequently, we performed partial correlation and mediation analyses in SN degeneration, network disruption, and motor impairment for PD patients. We found significantly decreased neuromelanin within SN and widely altered inter-network FCs, mainly involved in the basal ganglia (BG), sensorimotor and frontoparietal networks in PD. In addition, decreased neuromelanin content was negatively correlated with the dorsal sensorimotor network (dSMN)-medial visual network connection (P = 0.012) and dSMN-BG connection (P = 0.004). Importantly, the effect of SN neuromelanin hypopigmentation on motor symptom severity in PD is partially mediated by the increased connectivity strength between BG and dSMN (indirect effect = - 1.358, 95% CI: - 2.997, - 0.147). Our results advanced our understanding of the interactions between neuromelanin hypopigmentation in SN and altered FCs of functional networks in PD and suggested the potential of multimodal metrics for early diagnosis and monitoring the response to therapies.


Asunto(s)
Hipopigmentación , Trastornos Motores , Enfermedad de Parkinson , Humanos , Enfermedad de Parkinson/complicaciones , Enfermedad de Parkinson/patología , Sustancia Negra/metabolismo , Melaninas/metabolismo , Imagen por Resonancia Magnética/métodos , Hipopigmentación/metabolismo , Hipopigmentación/patología
12.
Cancer Biomark ; 39(3): 223-230, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38217586

RESUMEN

OBJECTIVE: This article aims to investigate the clinical value of hemoglobin/red cell distribution width ratio (Hb/RDW), C-reactive protein/albumin ratio (CAR) and plateletcrit (PCT) combined with carcinoembryonic antigen (CEA) in colorectal cancer (CRC) auxiliary diagnosis. METHODS: We retrospectively analyzed in 718 subjects (212 with CRC, 209 with benign colorectal lesions (BCL), 111 with other cancers, and 186 healthy controls). RESULTS: The CAR, PCT, and CEA in the CRC group were higher than those in the BCL, other cancers, and the healthy control group. However, Hb/RDW in the CRC group was lower than the other three groups. Moreover, there were significant differences in Hb/RDW and CEA among different T-N-M stages (all P< 0.05). Multivariate logistic regression showed that low level of Hb/RDW and high level of CAR, CEA, PCT were risk factors for CRC, and are correlated with CRC stage. Additionally, the area under the receiver operating characteristic curve (AUC) of Hb/RDW+CEA (AUC: 0.735), CAR+CEA (AUC: 0.748), PCT+CEA (AUC: 0.807) was larger than that of Hb/RDW (AUC: 0.503), CAR (AUC: 0.614), or PCT (AUC: 0.713) alone (all P< 0.001) in distinguishing CRC from BCL. CONCLUSIONS: Hb/RDW, CAR, PCT, and CEA are independent risk factors for CRC. Hb/RDW, CAR, and PCT combined with CEA have significant value for auxiliary differential diagnosis of CRC and BCL.


Asunto(s)
Antígeno Carcinoembrionario , Neoplasias Colorrectales , Humanos , Biomarcadores de Tumor , Estudios Retrospectivos , Diagnóstico Diferencial , Neoplasias Colorrectales/diagnóstico , Neoplasias Colorrectales/patología , Hemoglobinas
13.
Environ Pollut ; 345: 123461, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38286261

RESUMEN

The increase in effluent discharge from wastewater treatment plants (WWTPs) into urban rivers has raised concerns about the potential effects on pathogen risks. This study utilized metagenomic sequencing combined with flow cytometry to analyze pathogen concentrations and antibiotic resistance in a typical effluent-receiving river. Quantitative microbial risk assessment (QMRA) was employed to assess the microbial risks of pathogens. The results indicated obvious spatial-temporal differences (i.e., summer vs. winter and effluent vs. river) in microbial composition. Microcystis emerged as a crucial species contributing to these variations. Pathogen concentrations were found to be higher in the river than in the effluent, with the winter exhibiting higher concentrations compared to the summer. The effluent discharge slightly increased the pathogen concentrations in the river in summer but dramatically reduced them in winter. The combined effects of cyanobacterial bloom and high temperature were considered key factors suppressing pathogen concentrations in summer. Moreover, the prevalence of antibiotic resistance of pathogens in the river was inferior to that in the effluent, with higher levels in winter than in summer. Three high-concentration pathogens (Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa) were selected for QMRA. The results showed that the risks of pathogens exceeded the recommended threshold value. Escherichia coli posed the highest risks. And the fishing scenario posed significantly higher risks than the walking scenario. Importantly, the effluent discharge helped reduce the microbial risks in the receiving river in winter. The study contributes to the management and decision-making regarding microbial risks in the effluent-receiving river.


Asunto(s)
Aguas Residuales , Purificación del Agua , Ríos/microbiología , Farmacorresistencia Microbiana , Escherichia coli , Antibacterianos
14.
J Magn Reson Imaging ; 59(5): 1769-1776, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-37501392

RESUMEN

BACKGROUND: The status of the hypothalamic-pituitary-gonadal (HPG) axis is important for assessing the onset of physiological or pathological puberty. The reference standard gonadotropin-releasing hormone (GnRH) stimulation test requires hospital admission and repeated blood samples. A simple noninvasive method would be beneficial. OBJECTIVES: To explore a noninvasive method for evaluating HPG axis activation in children using an MRI radiomics model. STUDY TYPE: Retrospective. POPULATION: Two hundred thirty-nine children (83 male; 3.6-14.6 years) with hypophysial MRI and GnRH stimulation tests, randomly divided a training set (168 children) and a test set (71 children). FIELD STRENGTH/SEQUENCE: 3.0 T, 3D isotropic fast spin echo (CUBE) T1-weighted imaging (T1WI) sequences. ASSESSMENT: Radiomics features were extracted from sagittal 3D CUBE T1WI, and imaging signatures were generated using the least absolute shrinkage and selection operator (LASSO) with 10-fold cross-validation. Diagnostic performance for differential diagnosis of HPG status was compared between a radiomics model and MRI features (adenohypophyseal height [aPH] and volume [aPV]). STATISTICAL TESTS: Receiver operating characteristic (ROC) and decision curve analysis (DCA). A P value <0.05 was considered statistically significant. RESULTS: Eight hundred fifty-one radiomics features were extracted and reduced to 10 by the LASSO method in the training cohort. The radiomics model based on CUBE T1WI showed good performance in assessment of HPG axis activation with an area under the ROC curve (AUC) of 0.81 (95% CI: 0.71, 0.91) in the test set. The AUC of the radiomics model was significantly higher than that of aPH (0.81 vs. 0.65) but there was no significant difference compared to aPV (0.81 vs. 0.78, P = 0.58). In DCA analysis, the radiomics signature showed higher net benefit over the aPV and aPH models. DATA CONCLUSIONS: The MRI radiomics model has potential to assess HPG axis activation status noninvasively, potentially providing valuable information in the diagnosis of patients with pathological puberty onset. EVIDENCE LEVEL: 4 TECHNICAL EFFICACY: Stage 2.


Asunto(s)
Eje Hipotálamico-Pituitario-Gonadal , Adenohipófisis , Niño , Humanos , Masculino , Estudios Retrospectivos , Radiómica , Imagen por Resonancia Magnética/métodos , Adenohipófisis/diagnóstico por imagen , Hormona Liberadora de Gonadotropina
15.
Anal Chim Acta ; 1285: 342030, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38057051

RESUMEN

BACKGROUND: As one of the most potent environmental estrogens, 17ß-estradiol (E2), which can be enriched into organisms through the food chain and cause harmful biological effects in humans, has been frequently detected in the water environment of the world. High performance liquid chromatography (HPLC) and gas chromatograohy-mass spectrometry (GC/MS) have been widely used for quantification of E2. Despite excellent accuracy, tedious pretreatment and expensive instruments result in their limited application. It is clear that there is an urgent need to establish simple, sensitive and accurate methods for the determination of E2. RESULTS: A split aptamer-based sandwich-type ratiometric biosensor based on split aptamer was developed by coupling photoelectrochemical and electrochemical assays for E2 detection. For analysis, the two fragments of split aptamer recognized E2 by forming sandwich structure, which triggered hybridization chain reaction (HCR) to produce double-stranded DNA (dsDNA) with CdTe quantum dots (QDs) labeled hairpin DNA. The resultant dsDNA can further absorb methylene blue (MB) to sensitize CdTe QDs for an enlarged photocurrent (IPEC) and output a redox current of IMB, and both of them acted as response signals for detection; [Fe(CN)6]3-/4- probe produced redox current of I[Fe(CN)6]3-/4- as reference signal. Using IMB/I[Fe(CN)6]3-/4- and IPEC/I[Fe(CN)6]3-/4- as yardsticks, the developed split aptamer-based sandwich-type ratiometric biosensor provides two linear ranges of 0.1-5000 pg mL-1 for IMB/I[Fe(CN)6]3-/4- and 0.1-10000 pg mL-1 for IPEC/I[Fe(CN)6]3-/4- with detection limits of 0.06 pg mL-1 and 0.02 pg mL-1, respectively. SIGNIFICANCE: These results of the biosensor are benefiting from the coupling of photoelectrochemical (PEC) and electrochemical (EC) assays as well as the unique cooperative recognition mechanism of split aptamer. This method not only enabled the biosensor to be successfully applied to the determination of E2 in lake water, but also broadens the prospects for the realization of sensitive and accurate detection of E2.


Asunto(s)
Aptámeros de Nucleótidos , Técnicas Biosensibles , Compuestos de Cadmio , Puntos Cuánticos , Humanos , Compuestos de Cadmio/química , Puntos Cuánticos/química , Telurio/química , Técnicas Biosensibles/métodos , ADN , Aptámeros de Nucleótidos/química , Estradiol/análisis , Agua , Técnicas Electroquímicas/métodos , Límite de Detección , Oro/química
16.
Medicine (Baltimore) ; 102(45): e35829, 2023 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-37960824

RESUMEN

The mitogen-activated protein kinases family of genes plays a crucial role in a wide range of inflammatory responses in the human body. The MAPK family of genes includes ERK, ERK5, JNK, P-38 mitogen-activated protein kinases. However, the correlation between MAPK family gene expression and pan-cancer prognosis, as well as the tumor microenvironment, has not been extensively studied. This study integrated multiple bioinformatics analysis methods to assess the expression and prognostic value of MAPK family genes, as well as their relationship with tumor microenvironment in patients with pan-cancer. The results showed that ERK, JNK, and P-38 MAPK expression were found to be significantly upregulated in rectum adenocarcinoma (READ), colon adenocarcinoma/rectum adenocarcinoma esophageal carcinoma (COADREAD), and kidney renal clear cell carcinoma (KIRC), and significantly downregulated in acute myeloid leukemia. And the results revealed good prognostic results for ERK, JNK, and P-38 MAPK in READ, COADREAD, and KIRC. We observed significant positive correlation between MAPK family gene expression and immune scores especially dendritic cells in READ, COADREAD, and KIRC. And we observed that the expression levels of MAPK family genes were significantly correlated with the expression of immune-related genes, such as CXCL1, CXCL2, CXCL8, CXCR1, CXCR2, CTLA-4, CD80, CD86, and CD28, suggesting their important role in regulating immune infiltrates and tumor progression. Therefore, our study suggested that MAPK family gene plays an important role in regulating immune infiltrates and tumor progression.


Asunto(s)
Adenocarcinoma , Carcinoma de Células Renales , Carcinoma , Neoplasias del Colon , Neoplasias Renales , Humanos , Microambiente Tumoral/genética , Pronóstico , Carcinoma de Células Renales/patología , Neoplasias Renales/patología , Proteínas Quinasas p38 Activadas por Mitógenos
17.
Environ Int ; 182: 108333, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37995389

RESUMEN

Large industrial estates for electrical and electronic waste (e-waste) mechanical dismantling and recycling are gradually replacing outmoded small factories and intensive domestic workshops for e-waste manual and chemical dismantling. However, the air pollution and health risks of persistent organic pollutants during the modern mechanical processing of e-waste, especially obsolete electrical equipment, still remain unclear. Here, unexpectedly high levels (409.3 ng/m3) and health risks of airborne polychlorinated biphenyls (PCBs) were found during the mechanical processing of obsolete electric equipment or parts in a large integrated dismantling industrial estate, which is comparable to or a dozen times higher than those reported during chemical processing. In contrast, the levels (936.0 pg/m3) and health risks of particulate polybrominated diphenyl ethers (PBDEs) were all lower than those of previous studies. PCB emissions (44.9-3300.5 ng/m3) varied significantly across six mechanical dismantling places specifically treating waste motors, electrical appliances, hardware, transformers, and metals, respectively. The high PCB content and mass processing number of obsolete electrical equipment probably result in the highest PCB emissions from the mechanical dismantling of obsolete motors, followed by waste electrical appliances and metals. The PCB non-cancer and cancer risks associated with inhalation and dermal exposure in different mechanical dismantling places were all above the given potential risk limits. In particular, the health risks of dismantling obsolete motor exceeded the definite risk levels. Little difference in PCB emissions and health risks between working and non-working time suggested the importance of PCB volatilization from most e-waste. Such high PCB emissions and health risks of PCBs undoubtedly posed a severe threat to frontline workers, but fortunately, they decreased significantly with the increasing distance from the industrial estate. We highlight that PCB emissions and associated health risks from obsolete electrical equipment with high PCB content during mechanical dismantling activities should be of great concern.


Asunto(s)
Residuos Electrónicos , Bifenilos Policlorados , Humanos , Bifenilos Policlorados/análisis , Residuos Electrónicos/efectos adversos , Residuos Electrónicos/análisis , Éteres Difenilos Halogenados/análisis , Reciclaje , Polvo/análisis , Monitoreo del Ambiente , China
18.
Curr Med Chem ; 2023 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-37916635

RESUMEN

BACKGROUND: Although immunotherapies have greatly improved diffuse large B-cell lymphoma (DLBCL) prognosis, a proportion of patients remain to be relapsed or refractory. Therefore, the identification of novel therapeutic targets and drugs is urgently required. Inhibition of the bromodomain and extra-terminal (BET) proteins has been a promising therapeutic strategy for various haematologic cancers. CPI-0610 is a potent and selective BET inhibitor. The effects of CPI-0610 in DLBCL cells have not been reported yet. AIMS: The aim of this study was to assess the effects of CPI-0610 in DLBCL and its underlying mechanisms. METHODS: DLBCL cells were treated with CPI-0610, followed by measuring cell viability, cell cycle, apoptosis, autophagy, and specific cell signaling pathways. Moreover, immunodeficient mice were engrafted with SUDHL2 cells and then treated with CPI-0610 for analysis of tumor burden. We also analyzed the synergistic effect of CPI-0610 with histone deacetylase inhibitor suberoylanilide hydroxamic acid. RESULTS: The present study demonstrated that CPI-0610 displayed cell cytotoxicity by arresting the G1 cell cycle and inducing endogenous and exogenous apoptotic pathways. Additionally, CPI-0610 decreased BRD4 and c-Myc expressions and affected MAPK, JAK/STAT, and AKT signalling pathways in human DLBCL cells. An in vivo experiment exhibited that CPI-0610 decreased the primary tumour growth of the DLBCL xenograft model. Furthermore, the use of CPI-0610 in combination with suberoylanilide hydroxamic acid exhibited a specific synergistic effect in inducing apoptosis through the regulation of STAT3 and p38. CONCLUSION: Targeting BET may be an effective therapeutic strategy and potentiated by a combination with histone deacetylase inhibition in DLBCL.

19.
Anal Chem ; 95(41): 15350-15356, 2023 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-37784219

RESUMEN

Lipid droplets (LDs) are crucial organelles used to store lipids and participate in lipid metabolism in cells. The abnormal aggregation and polarity change of LDs are associated with the occurrence of diseases, such as steatosis. Herein, the polarity-sensitive probe TBPCPP with a donor-acceptor-π-acceptor (D-A-π-A) structure was designed and synthesized. The TBPCPP has a large Stokes shift (∼220 nm), excellent photostability, high LD targeting, and considerable two-photon absorption (TPA) cross-section (∼226 GM), enabling deep two-photon imaging (∼360 µm). In addition, the fluorescence lifetime of TBPCPP decreases linearly with increasing solvent polarity. Therefore, with the assistance of two-photon fluorescence lifetime imaging microscopy (TP-FLIM), TBPCPP has successfully achieved not only the visualization of polarity changes caused by LD accumulation in HepG-2 cells but also lipid-specific imaging and visualization of different polarities in lipid-rich regions in zebrafish for the first time. Furthermore, TP-FLIM revealed that the polarity gradually decreases during steatosis in HepG-2 cells, which provided new insights into the diagnosis of steatosis.


Asunto(s)
Gotas Lipídicas , Pez Cebra , Animales , Gotas Lipídicas/química , Microscopía Fluorescente/métodos , Fotones , Lípidos/análisis , Colorantes Fluorescentes/química
20.
BMC Infect Dis ; 23(1): 707, 2023 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-37864131

RESUMEN

BACKGROUND: This study's objective was to investigate the predictors for severe anemia, severe leukopenia, and severe thrombocytopenia when amphotericin B deoxycholate-based induction therapy is used in HIV-infected patients with talaromycosis. METHODS: A total of 170 HIV-infected patients with talaromycosis were enrolled from January 1st, 2019, to September 30th, 2020. RESULTS: Approximately 42.9%, 20.6%, and 10.6% of the enrolled patients developed severe anemia, severe leukopenia, and severe thrombocytopenia, respectively. Baseline hemoglobin level < 100 g/L (OR = 5.846, 95% CI: 2.765 ~ 12.363), serum creatinine level > 73.4 µmol/L (OR = 2.573, 95% CI: 1.157 ~ 5.723), AST/ALT ratio > 1.6 (OR = 2.479, 95% CI: 1.167 ~ 5.266), sodium level ≤ 136 mmol/liter (OR = 4.342, 95% CI: 1.747 ~ 10.789), and a dose of amphotericin B deoxycholate > 0.58 mg/kg/d (OR = 2.504, 95% CI:1.066 ~ 5.882) were observed to be independent risk factors associated with the development of severe anemia. Co-infection with tuberculosis (OR = 3.307, 95% CI: 1.050 ~ 10.420), and platelet level (per 10 × 109 /L) (OR = 0.952, 95% CI: 0.911 ~ 0.996) were shown to be independent risk factors associated with the development of severe leukopenia. Platelet level < 100 × 109 /L (OR = 2.935, 95% CI: 1.075 ~ 8.016) was identified as the independent risk factor associated with the development of severe thrombocytopenia. There was no difference in progression to severe anemia, severe leukopenia, and severe thrombocytopenia between the patients with or without fungal clearance at 2 weeks. 10 mg on the first day of amphotericin B deoxycholate was calculated to be independent risk factors associated with the development of severe anemia (OR = 2.621, 95% CI: 1.107 ~ 6.206). The group receiving a starting amphotericin B dose (10 mg, 20 mg, daily) exhibited the highest fungal clearance rate at 96.3%, which was significantly better than the group receiving a starting amphotericin B dose (5 mg, 10 mg, 20 mg, daily) (60.9%) and the group receiving a starting amphotericin B dose (5 mg, 15 mg, and 25 mg, daily) (62.9%). CONCLUSION: The preceding findings reveal risk factors for severe anemia, severe leukopenia, and severe thrombocytopenia. After treatment with Amphotericin B, these severe adverse events are likely unrelated to fungal clearance at 2 weeks. Starting amphotericin B deoxycholate at a dose of 10 mg on the first day may increase the risk of severe anemia but can lead to earlier fungal clearance. TRIAL REGISTRATION: ChiCTR1900021195. Registered 1 February 2019.


Asunto(s)
Anemia , Infecciones por VIH , Leucopenia , Trombocitopenia , Humanos , Anfotericina B/efectos adversos , Antifúngicos/uso terapéutico , Estudios Prospectivos , Quimioterapia de Inducción , Anemia/inducido químicamente , Anemia/tratamiento farmacológico , Leucopenia/inducido químicamente , Leucopenia/tratamiento farmacológico , Infecciones por VIH/complicaciones , Infecciones por VIH/tratamiento farmacológico , Trombocitopenia/inducido químicamente , Trombocitopenia/tratamiento farmacológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA