Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 373
Filtrar
1.
Water Res ; 267: 122568, 2024 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-39369507

RESUMEN

International food trade reshapes regional water scarcity through virtual water transfers (VWT), influencing water use equality and equity. This study examines eight populous yet impoverished countries in Africa and Asia, representing 30 % of the global poor population and contributing 20 % to agricultural VWT. Despite their significant role, these countries have been understudied due to a lack of data or attention. By integrating multiple datasets and models, we assess how international food trade impacts water scarcity, inequality, and inequity within these countries and identify the driving factors. Our findings reveal varied outcomes: Uganda and Ethiopia benefit from reduced water scarcity (∼40 % and ∼7 %) and improved equality and equity (∼90 % and ∼68 %), while India and Pakistan face exacerbated scarcity (∼4 % and ∼2 %) and widening inequality and inequity (∼4 % and ∼7 %). The effects are largely driven by critical trade flows of staple and cash crops like rice, sugar cane, and cotton among developing countries, propelled by comparative advantages in agricultural production, econo-geography, food demand, and water endowment between importers and exporters. Addressing these water challenges involves diversifying import channels to reduce reliance on detrimental trade flows, such as India's rice exports to Iran, while promoting beneficial flows, like Bangladesh's cotton imports from India, through trade agreements. Additionally, implementing pro-poor water policies (e.g., providing water subsidies) and water-saving techniques (e.g., adopting drip irrigation) is crucial, though caution is needed to avoid unintendedly marginalizing vulnerable groups through large-scale water projects.

2.
Inorg Chem ; 63(37): 17100-17107, 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39231003

RESUMEN

Alloying provides the opportunity to widen the physical and chemical properties of quantum dots (QDs); however, the precise controlled composition of alloyed QDs is still a challenge. In this work, a few quaternary alloyed zinc chalcogenide magic-sized nanoclusters (MSCs) were synthesized using the active chalcogen precursors of tri(dimethylamine)phosphine chalcogen, such as Zn21S4Se3Te4 (MSCs-348), Zn14S4Se4Te7 (MSCs-350), Zn15S1Se4Te6 (MSCs-349), and Zn17S2Se2Te7 (MSCs-355) MSCs. The composition of alloyed zinc chalcogenide MSCs was tuned with the different amounts of added chalcogen precursors. Finally, the produced alloyed zinc chalcogenide MSCs can be used as precursors to synthesize alloyed zinc chalcogenide QDs, and the composition of zinc chalcogenide QDs can be adjusted with different alloyed MSCs. This work provides methods to alloy MSCs with controlled composition, providing efficient precursors for alloyed QDs.

3.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi ; 41(4): 715-723, 2024 Aug 25.
Artículo en Chino | MEDLINE | ID: mdl-39218597

RESUMEN

Animal localization and trajectory tracking are of great value for the study of brain spatial cognition and navigation neural mechanisms. However, traditional optical lens video positioning techniques are limited in their scope due to factors such as camera perspective. For pigeons with excellent spatial cognition and navigation abilities, based on the beacon positioning technology, a three-dimensional (3D) trajectory positioning and tracking method suitable for large indoor spaces was proposed, and the corresponding positioning principle and hardware structure were provided. The results of in vitro and in vivo experiments showed that the system could achieve centimeter-level positioning and trajectory tracking of pigeons in a space of 360 cm × 200 cm × 245 cm. Compared with traditional optical lens video positioning techniques, this system has the advantages of large space, high precision, and high response speed. It not only helps to study the neural mechanisms of pigeon 3D spatial cognition and navigation, but also has high reference value for trajectory tracking of other animals.


Asunto(s)
Columbidae , Navegación Espacial , Columbidae/fisiología , Animales , Navegación Espacial/fisiología , Imagenología Tridimensional , Grabación en Video , Cognición
4.
Reprod Domest Anim ; 59(9): e14715, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39262106

RESUMEN

G-protein-coupled receptor kinase 2 (GRK2) interacts with Gßγ and Gαq, subunits of G-protein alpha, to regulate cell signalling. The second messenger inositol trisphosphate, produced by activated Gαq, promotes calcium release from the endoplasmic reticulum (ER) and regulates maturation-promoting factor (MPF) activity. This study aimed to investigate the role of GRK2 in MPF activity during the meiotic maturation of porcine oocytes. A specific inhibitor of GRK2 (ßi) was used in this study. The present study showed that GRK2 inhibition increased the percentage of oocyte arrest at the metaphase I (MI) stage (control: 13.84 ± 0.95%; ßi: 31.30 ± 4.18%), which resulted in the reduction of the maturation rate (control: 80.36 ± 1.94%; ßi: 65.40 ± 1.14%). The level of phospho-GRK2 decreased in the treated group, suggesting that GRK2 activity was reduced upon GRK2 inhibition. Furthermore, the addition of ßi decreased Ca2+ release from the ER. The protein levels of cyclin B and cyclin-dependent kinase 1 were higher in the treatment group than those in the control group, indicating that GRK2 inhibition prevented a decrease in MPF activity. Collectively, GRK2 inhibition induced meiotic arrest at the MI stage in porcine oocytes by preventing a decrease in MPF activity, suggesting that GRK2 is essential for oocyte meiotic maturation in pigs.


Asunto(s)
Calcio , Quinasa 2 del Receptor Acoplado a Proteína-G , Meiosis , Oocitos , Animales , Oocitos/efectos de los fármacos , Meiosis/efectos de los fármacos , Quinasa 2 del Receptor Acoplado a Proteína-G/metabolismo , Femenino , Calcio/metabolismo , Porcinos , Factor Promotor de Maduración/metabolismo , Técnicas de Maduración In Vitro de los Oocitos/veterinaria
5.
Phytomedicine ; 135: 156030, 2024 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-39265206

RESUMEN

BACKGROUND: Pulmonary arterial smooth muscle cells (PASMCs) have a neoplastic phenotype characterized by hyperproliferative and anti-apoptotic features that contribute to pulmonary hypertension (PH) development. DNA-sensing adapter protein stimulator of interferon genes (STING) regulate the phenotypic switch of vessel smooth muscle cells. ß-sitosterol (SITO) is a nutrient derived from plants that inhibits vascular smooth muscle cell proliferation without notable toxicity. However, the effect of SITO on cancer-like PH-associated pulmonary vascular remodeling and the specific mechanism has not yet be studied. PURPOSE: This study investigated the in vitro and in vivo effects of SITO against PH, and its underlying mechanisms. METHODS: The therapeutic efficacy of SITO was assessed, and its underlying mechanisms were explored in hypoxia-induced and platelet-derived growth factor (PDGF)-BB-stimulated primary PASMCs and in a monocrotaline (MCT)-induced preclinical PH rat model. SITO or sildenafil (SID) were administered after the MCT intraperitoneal injection. Pulmonary parameters, right heart function, morphology, and PASMCs were cultured for verification. The expression levels of DNA damage/cyclic GMP-AMP synthase (cGAS)/STING were determined using immunofluorescence and Western blotting. STING agonists that interfere with PASMCs were used to determine whether STING mediates the effects of SITO. RESULTS: SITO prevented PASMCs proliferation, promoted apoptosis and suppressed phenotypic switching in a dose-dependent manner in vitro and in vivo. In vivo results in rats demonstrated that four weeks of intragastric SITO administration effectively mitigated the MCT-induced elevation of hemodynamic parameters, improved right cardiac function, and reduced pulmonary arteries remodeling. Mechanistically, DNA damage and cGAS/STING/nuclear factor kappa-B signaling activation were observed in rats with PH and cultured PASMCs. SITO exhibited protective effects by suppressing the DNA damage, potentially via inhibiting the expression level of the cGAS/STING signaling pathway. Pharmacological overexpression of STING abolished the anti-proliferative effects of SITO treatment in hypoxia-induced and PDGF-stimulated PASMCs by downregulating PCNA. CONCLUSION: SITO may be an attractive agent for PH vascular remodeling by inhibiting proliferation and modulating the phenotypic switch in PASMCs via the DNA damage/cGAS/STING signaling pathway. This study provides a novel therapeutic agent and mediator of the pathological development of PASMCs and PH.

6.
Zool Res ; 45(6): 1175-1187, 2024 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-39318125

RESUMEN

Isocitrate dehydrogenase 2 (IDH2) and glutamate dehydrogenase 1 (GLUD1) are key enzymes involved in the production of α-ketoglutarate (α-KG), a metabolite central to the tricarboxylic acid cycle and glutamine metabolism. In this study, we investigated the impact of IDH2 and GLUD1 on early porcine embryonic development following IDH2 and GLUD1 knockdown (KD) via double-stranded RNA (dsRNA) microinjection. Results showed that KD reduced α-KG levels, leading to delayed embryonic development, decreased blastocyst formation, increased apoptosis, reduced blastomere proliferation, and pluripotency. Additionally, IDH2 and GLUD1 KD induced abnormally high levels of trimethylation of lysine 20 of histone H4 (H4K20me3) at the 4-cell stage, likely resulting in transcriptional repression of embryonic genome activation (EGA)-related genes. Notably, KD of lysine methyltransferase 5C ( KMT5C) and supplementation with exogenous α-KG reduced H4K20me3 expression and partially rescued these defects, suggesting a critical role of IDH2 and GLUD1 in the epigenetic regulation and proper development of porcine embryos. Overall, this study highlights the significance of IDH2 and GLUD1 in maintaining normal embryonic development through their influence on α-KG production and subsequent epigenetic modifications.


Asunto(s)
Desarrollo Embrionario , Epigénesis Genética , Glutamato Deshidrogenasa , Isocitrato Deshidrogenasa , Partenogénesis , Animales , Isocitrato Deshidrogenasa/genética , Isocitrato Deshidrogenasa/metabolismo , Porcinos/embriología , Glutamato Deshidrogenasa/metabolismo , Glutamato Deshidrogenasa/genética , Histonas/metabolismo , Histonas/genética , Regulación del Desarrollo de la Expresión Génica , Técnicas de Silenciamiento del Gen
7.
Theriogenology ; 230: 81-90, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39276507

RESUMEN

Methionine adenosyltransferase 2A (MAT2A) is an essential enzyme in the methionine cycle that generates S-adenosylmethionine (SAM) by reacting with methionine and ATP. SAM acts as a methyl donors for histone and DNA methylation, which plays key roles in zygotic genome activation (ZGA). However, the effects of MAT2A on porcine ZGA remain unclear. To investigate the function of MAT2A and its underlying mechanism in porcine ZGA, MAT2A was knocked down by double-stranded RNA injection at the 1-cell stage. MAT2A is highly expressed at every stage of porcine embryo development. The percentages of four-cell-stage embryos and blastocysts were lower in the MAT2A-knockdown (KD) group than in the control group. Notably, depletion of MAT2A decreased the levels of H3K4me2, H3K9me2/3, and H3K27me3 at the four-cell stage, whereas MAT2A KD reduced the transcriptional activity of ZGA genes. MAT2A KD decreased embryonic ectoderm development (EED) and enhancer of zeste homolog 2 (EZH2) expression. Exogenous SAM supplementation rescued histone methylation levels and developmental arrest induced by MAT2A KD. Additionally, MAT2A KD significantly increased DNA damage and apoptosis. In conclusion, MAT2A is involved in regulating transcriptional activity and is essential for regulating histone methylation during porcine ZGA.

8.
J Control Release ; 375: 776-787, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39284526

RESUMEN

In vitro and ex-vivo target identification strategies often fail to predict in vivo efficacy, particularly for glioblastoma (GBM), a highly heterogenous tumor rich in resistant cancer stem cells (GSCs). An in vivo screening tool can improve prediction of therapeutic efficacy by considering the complex tumor microenvironment and the dynamic plasticity of GSCs driving therapy resistance and recurrence. This study proposes lipid nanoparticles (LNPs) as an efficient in vivo CRISPR-Cas9 gene editing tool for target validation in mesenchymal GSCs. LNPs co-delivering mRNA (mCas9) and single-guide RNA (sgRNA) were successfully formulated and optimized facilitating both in vitro and in vivo gene editing. In vitro, LNPs achieved up to 67 % reduction in green fluorescent protein (GFP) expression, used as a model target, outperforming a commercial transfection reagent. Intratumoral administration of LNPs in GSCs resulted in ∼80 % GFP gene knock-out and a 2-fold reduction in GFP signal by day 14. This study showcases the applicability of CRISPR-Cas9 LNPs as a potential in vivo screening tool in GSCs, currently lacking effective treatment. By replacing GFP with a pool of potential targets, the proposed platform presents an exciting prospect for therapeutic target validation in orthotopic GSCs, bridging the gap between preclinical and clinical research.

9.
Commun Biol ; 7(1): 1223, 2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-39349670

RESUMEN

Metabolism has been implicated in cell fate determination, particularly through epigenetic modifications. Similarly, lipid remodeling also plays a role in regulating cell fate. Here, we present comprehensive lipidomics analysis during BMP4-driven primed to naive pluripotency transition or BiPNT and demonstrate that lipid remodeling plays an essential role. We further identify Cpt1a as a rate-limiting factor in BiPNT, driving lipid remodeling and metabolic reprogramming while simultaneously increasing intracellular acetyl-CoA levels and enhancing H3K27ac at chromatin open sites. Perturbation of BiPNT by histone acetylation inhibitors suppresses lipid remodeling and pluripotency transition. Together, our study suggests that lipid remodeling promotes pluripotency transitions and further regulates cell fate decisions, implicating Cpt1a as a critical regulator between primed-naive cell fate control.


Asunto(s)
Carnitina O-Palmitoiltransferasa , Metabolismo de los Lípidos , Carnitina O-Palmitoiltransferasa/metabolismo , Carnitina O-Palmitoiltransferasa/genética , Animales , Ratones , Diferenciación Celular , Células Madre Pluripotentes/metabolismo , Células Madre Pluripotentes/citología , Lipidómica , Reprogramación Celular/genética
10.
Front Oncol ; 14: 1324810, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39328206

RESUMEN

Objective: This study aimed to investigate the status quo of readiness for hospital discharge in patients with brain tumours after surgery and to analyse its influencing factors. Method: A total of 300 patients with brain tumours who were admitted to the neurosurgery ward of our hospital between September 2020 and December 2022 were selected as the study participants using the convenient sampling method. The readiness for hospital discharge in patients with brain tumours after surgery was investigated using a general information questionnaire, the Readiness for Hospital Discharge Scale (RHDS), the Quality of Discharge Teaching Scale (QDTS), the University of Washington Quality of Life Questionnaire (UW-QOL), and the Social Support Rating Scale (SSRS), and its influencing factors were analysed. Results: The total RHDS score of patients with brain tumours was (155.02 ± 14.67), which was at a medium level. There was a positive correlation between readiness for hospital discharge in patients with brain tumours after surgery and the UW-QOL score (r = 0.459, p = 0.001), SSRS score (r = 0.322, p = 0.000), and QDTS score (r = 0.407, p = 0.001). The influencing factors of readiness for hospital discharge in patients with brain tumours included the content actually obtained by patients (health guidance) before discharge (p = 0.001), discharge teaching skills (p = 0.001), age (p = 0.006), swallowing status (p = 0.021), education level (p = 0.016), and objective support (p = 0.022). Conclusion: The readiness for hospital discharge in patients with brain tumours is at a medium level. Medical staff should give inpatients more targeted knowledge and implement personalised health education according to the patient's age, education level, swallowing status, and objective support to improve the patient's readiness for hospital discharge.

11.
Sci Total Environ ; 953: 176143, 2024 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-39260495

RESUMEN

Global Net Anthropogenic Nitrogen Input (NANI) at high resolution is crucial for assessing the impact of human activities on aquatic environments. Insufficient global high-resolution data sources and methods have hindered the effective examination of the global characteristics and driving forces of NANI. This study presents a general framework for calculating global NANI, providing estimates at a 5-arc-minute resolution and over 1.42 million lake basins in 2015. The results highlight the region near the Tropic of Cancer as a concentration area for high NANI and an inflection point for latitude-based accumulation variation. It also emphasizes the uneven distribution of NANI among continents, with Asia and Africa having the highest proportions, yet their high and low values are notably lower than those of Europe and South America. A similar pattern is observed in global lakes, where Asia has the smallest quantity and volume, but the highest NANI intensity. In contrast, North America and Europe have larger quantities and volumes but the lowest NANI intensity. The global distribution characteristics reveal a clustering pattern in high and low values, with 1.25 % of the area having a sum of NANI exceeding 20 %. The uncertainty analysis regarding model parameters indicates that continents with the highest NANI do not always exhibit the highest uncertainty. These results bridge the gap between global nitrogen sustainable management and anthropogenic nitrogen input. They support research on spatiotemporal changes and controlling factors of global river nutrient loads, as well as the impact of climatic factors on basin nitrogen loss and its variability.

12.
Nucleic Acids Res ; 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39166492

RESUMEN

N6-methyladenonsine (m6A) is ubiquitously distributed in mammalian mRNA. However, the precise involvement of m6A in early development has yet to be fully elucidated. Here, we report that deletion of the m6A demethylase ALKBH5 in human embryonic stem cells (hESCs) severely impairs definitive endoderm (DE) differentiation. ALKBH5-/- hESCs fail to undergo the primitive streak (PS) intermediate transition that precedes endoderm specification. Mechanistically, we show that ALKBH5 deficiency induces m6A hypermethylation around the 3' untranslated region (3'UTR) of GATA6 transcripts and destabilizes GATA6 mRNA in a YTHDF2-dependent manner. Moreover, GATA6 binds to the promoters of critical regulatory genes involved in Wnt/ß-catenin signaling transduction, including the canonical Wnt antagonist DKK1 and DKK4, which are unexpectedly repressed upon the dysregulation of GATA6 mRNA metabolism. Remarkably, DKK1 and DKK4 both exhibit a pleiotropic effect in modulating the Wnt/ß-catenin cascade and guard the endogenous signaling activation underlying DE formation as potential downstream targets of the ALKBH5-GATA6 regulation. Here, we unravel a role of ALKBH5 in human endoderm formation in vitro by modulating the canonical Wnt signaling logic through the previously unrecognized functions of DKK1/4, thus capturing a more comprehensive role of m6A in early human embryogenesis.

13.
NPJ Metab Health Dis ; 2(1): 20, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39149696

RESUMEN

Histone deacetylases (HDACs) have a wide range of targets and can rewire both the chromatin and lipidome of cancer cells. In this study, we show that valproic acid (VPA), a brain penetrant anti-seizure medication and histone deacetylase inhibitor, inhibits the growth of IDH1 mutant tumors in vivo and in vitro, with at least some selectivity over IDH1 wild-type tumors. Surprisingly, genes upregulated by VPA showed no enhanced chromatin accessibility at the promoter, but there was a correlation between VPA-downregulated genes and diminished promoter chromatin accessibility. VPA inhibited the transcription of lipogenic genes and these lipogenic genes showed significant decreases in promoter chromatin accessibility only in the IDH1 MT glioma cell lines tested. VPA inhibited the mTOR pathway and a key lipogenic gene, fatty acid synthase (FASN). Both VPA and a selective FASN inhibitor TVB-2640 rewired the lipidome and promoted apoptosis in an IDH1 MT but not in an IDH1 WT glioma cell line. We further find that HDACs are involved in the regulation of lipogenic genes and HDAC6 is particularly important for the regulation of FASN in IDH1 MT glioma. Finally, we show that FASN knockdown alone and VPA in combination with FASN knockdown significantly improved the survival of mice in an IDH1 MT primary orthotopic xenograft model in vivo. We conclude that targeting fatty acid metabolism through HDAC inhibition and/or FASN inhibition may be a novel therapeutic opportunity in IDH1 mutant gliomas.

14.
Antioxidants (Basel) ; 13(7)2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39061935

RESUMEN

Assisted reproduction technology (ART) procedures are often impacted by post-ovulatory aging (POA), which can lead to reduced fertilization rates and impaired embryo development. This study used RNA sequencing analysis and experimental validation to study the similarities and differences between in vivo- and vitro-matured porcine oocytes before and after POA. Differentially expressed genes (DEGs) between fresh in vivo-matured oocyte (F_vivo) and aged in vivo-matured oocyte (A_vivo) and DEGs between fresh in vitro-matured oocyte (F_vitro) and aged in vitro-matured oocyte (A_vitro) were intersected to explore the co-effects of POA. It was found that "organelles", especially "mitochondria", were significantly enriched Gene Ontology (GO) terms. The expression of genes related to the "electron transport chain" and "cell redox homeostasis" pathways related to mitochondrial function significantly showed low expression patterns in both A_vivo and A_vitro groups. Weighted correlation network analysis was carried out to explore gene expression modules specific to A_vivo. Trait-module association analysis showed that the red modules were most associated with in vivo aging. There are 959 genes in the red module, mainly enriched in "RNA binding", "mRNA metabolic process", etc., as well as in GO terms, and "spliceosome" and "nucleotide excision repair" pathways. DNAJC7, IK, and DDX18 were at the hub of the gene regulatory network. Subsequently, the functions of DDX18 and DNAJC7 were verified by knocking down their expression at the germinal vesicle (GV) and Metaphase II (MII) stages, respectively. Knockdown at the GV stage caused cell cycle disorders and increase the rate of abnormal spindle. Knockdown at the MII stage resulted in the inefficiency of the antioxidant melatonin, increasing the level of intracellular oxidative stress, and in mitochondrial dysfunction. In summary, POA affects the organelle function of oocytes. A_vivo oocytes have some unique gene expression patterns. These genes may be potential anti-aging targets. This study provides a better understanding of the detailed mechanism of POA and potential strategies for improving the success rates of assisted reproductive technologies in pigs and other mammalian species.

15.
Biomed Environ Sci ; 37(6): 628-638, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38988113

RESUMEN

Objective: Pertussis cases have increased markedly since 2018 in Guangxi. The aim of this study was to evaluate antibody levels and the infection status of pertussis in the resident population. Method: A total of 10,215 serum samples from residents were collected from August-November 2018 and tested for anti-pertussis IgG and toxin IgG using the enzyme-linked immunosorbent assay (ELISA). Results: Of the collected samples, 1,833 (17.94%) tested positive for anti-pertussis IgG, with the median concentration of 16.06 IU/mL. Antibody level < 10 IU/mL accounted for more than 60% in children under 4 years of age, but declined with age, whereas the percentages of the other three levels (10-40, 40-50, and ≥ 50 IU/mL) increased almost with age ( P < 0.001). Moreover, 7,924 samples were selected for anti-pertussis toxin IgG, of which 653 (8.24%) tested positive (≥ 40 IU/mL) with the median concentration of 5.89 IU/mL, and 204 participants (2.56%) had recent pertussis infection (≥ 100 IU/mL). Among the different age groups, the highest rates of positivity and recent infection were observed at 11-20 years of age, the lowest positivity rate at 5 years of age, and the lowest recent infection rate at 4 years of age ( P < 0.001, P = 0.005, respectively). Conclusion: The survey results showed that all age groups in Guangxi lacked immunity against pertussis, which was one of the main factors contributing to the resurgence of pertussis in 2018. In addition, the prevalence of pertussis is relatively high in Guangxi, and its incidence is seriously underestimated, especially in adolescents and adults.


Asunto(s)
Tos Ferina , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Niño , Preescolar , Femenino , Lactante , Masculino , Persona de Mediana Edad , Adulto Joven , Distribución por Edad , Anticuerpos Antibacterianos/sangre , Anticuerpos Antibacterianos/inmunología , Bordetella pertussis/inmunología , China/epidemiología , Estudios Transversales , Inmunoglobulina G/sangre , Inmunoglobulina G/inmunología , Vacuna contra la Tos Ferina , Tos Ferina/epidemiología , Tos Ferina/inmunología , Tos Ferina/prevención & control , Humanos
16.
Nat Commun ; 15(1): 6200, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39043686

RESUMEN

Cell fate is likely regulated by a common machinery, while components of this machine remain to be identified. Here we report the design and testing of engineered cell fate controller NanogBiD, fusing BiD or BRG1 interacting domain of SS18 with Nanog. NanogBiD promotes mouse somatic cell reprogramming efficiently in contrast to the ineffective native protein under multiple testing conditions. Mechanistic studies further reveal that it facilitates cell fate transition by recruiting the intended Brg/Brahma-associated factor (BAF) complex to modulate chromatin accessibility and reorganize cell state specific enhancers known to be occupied by canonical Nanog, resulting in precocious activation of multiple genes including Sall4, miR-302, Dppa5a and Sox15 towards pluripotency. Although we have yet to test our approach in other species, our findings suggest that engineered chromatin regulators may provide much needed tools to engineer cell fate in the cells as drugs era.


Asunto(s)
Proteína Homeótica Nanog , Factores de Transcripción , Animales , Ratones , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Proteína Homeótica Nanog/metabolismo , Proteína Homeótica Nanog/genética , Reprogramación Celular/genética , Cromatina/metabolismo , Cromatina/genética , ADN Helicasas/metabolismo , ADN Helicasas/genética , Diferenciación Celular , Ingeniería Celular/métodos , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética
17.
Microbiol Res ; 286: 127823, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38959523

RESUMEN

Plant-associated streptomycetes play important roles in plant growth and development. However, knowledge of volatile-mediated crosstalk between Streptomyces spp. and plants remains limited. In this study, we investigated the impact of volatiles from nine endophytic Streptomyces strains on the growth and development of plants. One versatile strain, Streptomyces setonii WY228, was found to significantly promote the growth of Arabidopsis thaliana and tomato seedlings, confer salt tolerance, and induce early flowering and increased fruit yield following volatile treatment. Analysis of plant growth-promoting traits revealed that S. setonii WY228 could produce indole-3-acetic acid, siderophores, ACC deaminase, fix nitrogen, and solubilize inorganic phosphate. These capabilities were further confirmed through genome sequencing and analysis. Volatilome analysis indicated that the volatile organic compounds emitted from ISP-2 medium predominantly comprised sesquiterpenes and 2-ethyl-5-methylpyrazine. Further investigations showed that 2-ethyl-5-methylpyrazine and sesquiterpenoid volatiles were the primary regulators promoting growth, as confirmed by experiments using the terpene synthesis inhibitor phosphomycin, pure compounds, and comparisons of volatile components. Transcriptome analysis, combined with mutant and inhibitor studies, demonstrated that WY228 volatiles promoted root growth by activating Arabidopsis auxin signaling and polar transport, and enhanced root hair development through ethylene signaling activation. Additionally, it was confirmed that volatiles can stimulate plant abscisic acid signaling and activate the MYB75 transcription factor, thereby promoting anthocyanin synthesis and enhancing plant salt stress tolerance. Our findings suggest that aerial signaling-mediated plant growth promotion and abiotic stress tolerance represent potentially overlooked mechanisms of Streptomyces-plant interactions. This study also provides an exciting strategy for the regulation of plant growth and the improvement of horticultural crop yields within sustainable agricultural practices.


Asunto(s)
Arabidopsis , Ácidos Indolacéticos , Tolerancia a la Sal , Streptomyces , Compuestos Orgánicos Volátiles , Arabidopsis/crecimiento & desarrollo , Arabidopsis/microbiología , Streptomyces/metabolismo , Compuestos Orgánicos Volátiles/metabolismo , Ácidos Indolacéticos/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Desarrollo de la Planta/efectos de los fármacos , Estrés Salino , Transducción de Señal , Raíces de Plantas/microbiología , Raíces de Plantas/crecimiento & desarrollo , Plantones/crecimiento & desarrollo , Plantones/microbiología , Plantones/metabolismo , Regulación de la Expresión Génica de las Plantas , Liasas de Carbono-Carbono/metabolismo , Fosfatos/metabolismo
18.
ChemSusChem ; : e202400961, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-39031879

RESUMEN

Developing low-cost and highly efficient electrocatalysts toward oxygen evolution reaction (OER) is of vital significance for electrochemical water splitting. Herein, we fabricate a heterostructure NiS/Ni(OH)x electrocatalyst (Ni-S-n) with regenerative oxygen vacancies via electro-deposition on nickel foam (NF) followed by a facile NaBH4 reduction. The resulting Ni-S-5 catalyst with appropriate amount of oxygen vacancies (Ovs) exhibits extraordinary activity for alkaline OER with overpotential of 142 mV and 248 mV to reach the current density of 10 mA cm-2 and 100 mA cm-2, respectively. This catalyst also shows remarkable durability with 40 h. After the stability test, the excellent OER performance is well recovered by regenerating the surface oxygen vacancies (Ovs) significantly with additional NaBH4 reduction. The Ni-S-5 catalyst still displays good activity even after repeating it three times (180 h). The surface oxygen vacancies act as vital active sites for OER. A mechanism of Ovs species transformation and regeneration based on the Ni-S-5 catalyst is proposed, which provides a new direction for exploring ultrastable and efficient OER electrocatalysts with renewable active species.

19.
Mater Horiz ; 11(17): 4064-4074, 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39042375

RESUMEN

In the pursuit of effective thermal management for electronic devices, it is crucial to develop insulation thermal interface materials (TIMs) that exhibit exceptional through-plane thermal conductivity, low thermal resistance, and minimal compression modulus. Boron nitride (BN), given its outstanding thermal conduction and insulation properties, has garnered significant attention as a potential material for this purpose. However, previously reported BN-based composites have consistently demonstrated through-plane thermal conductivity below 10 W m-1 K-1 and high compression modulus, whilst also presenting challenges in terms of mass production. In this study, low molecular weight polydimethylsiloxane (PDMS) and large-size BN were utilized as the foundational materials. Utilizing a rolling-curing integrated apparatus, we successfully accomplished the continuous preparation of large-sized, high-adhesion BN films. Subsequent implementation of stacking, cold pressing, and vertical cutting techniques enabled the attainment of a remarkable BN-based TIM, characterized by an unprecedented through-plane thermal conductivity of up to 12.11 W m-1 K-1, remarkably low compression modulus (55 kPa), and total effective thermal resistance (0.16 °C in2 W-1, 50 Psi). During the TIMs performance evaluation, our TIMs demonstrated superior heat dissipation capabilities compared with commercial TIMs. At a heating power density of 40 W cm-2, the steady-state temperature of the ceramic heating element was found to be 7 °C lower than that of the commercial TIMs. This pioneering feat not only contributes valuable technical insights for the development of high-performance insulating TIMs but also establishes a solid foundation for widespread implementation in thermal management applications across a range of electronic devices.

20.
Genes (Basel) ; 15(7)2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-39062632

RESUMEN

Cytochrome P450 (CYP) is a crucial oxidoreductase enzyme that plays a significant role in plant defense mechanisms. In this study, a specific cytochrome P450 gene (MnCYP710A11) was discovered in mulberry (Morus notabilis). Bioinformatic analysis and expression pattern analysis were conducted to elucidate the involvement of MnCYP710A11 in combating Botrytis cinerea infection. After the infection of B. cinerea, there was a notable increase in the expression of MnCYP710A11. MnCYP710A11 is overexpressed in Arabidopsis and mulberry and strongly reacts to B. cinerea. The overexpression of the MnCYP710A11 gene in Arabidopsis and mulberry led to a substantial enhancement in resistance against B. cinerea, elevated catalase (CAT) activity, increased proline content, and reduced malondialdehyde (MDA) levels. At the same time, H2O2 and O2- levels in MnCYP710A11 transgenic Arabidopsis were decreased, which reduced the damage of ROS accumulation to plants. Furthermore, our research indicates the potential involvement of MnCYP710A11 in B. cinerea resistance through the modulation of other resistance-related genes. These findings establish a crucial foundation for gaining deeper insights into the role of cytochrome P450 in mulberry plants.


Asunto(s)
Arabidopsis , Botrytis , Sistema Enzimático del Citocromo P-450 , Resistencia a la Enfermedad , Regulación de la Expresión Génica de las Plantas , Morus , Enfermedades de las Plantas , Proteínas de Plantas , Botrytis/patogenicidad , Arabidopsis/genética , Arabidopsis/microbiología , Morus/genética , Morus/microbiología , Resistencia a la Enfermedad/genética , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/genética , Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/genética , Especies Reactivas de Oxígeno/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA