Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Mar Environ Res ; 193: 106258, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37989678

RESUMEN

Microplastics (MPs) pollution is regarded as a global challenge for ocean. As an important food source of human, macroalgae could suffer MP pollution and transmit MPs into human via food web. However, few studies have revealed the relationship of MP pollution between macroalgae and its habitat. In order to evaluate the trapping and accumulation of MPs in macroalgae and surface water, the present study investigated MP pollution in a typical aquaculture macroalgae species, laver (Porphyra haitanensis) in the Yueqing Bay. The results indicated MP abundance in laver (1.45 ± 0.26 items/g) was at a medium level while MP abundance in surface water (0.21 ± 0.15 item/m3) was at a relatively low level worldwide. Distribution trend and characteristics of MPs in laver and surface water showed highly similarity. Besides, heavy metal elements (Fe and Zr) were detected on the surface of MPs trapped by laver. Pollution load index (PLI) in surface water of the whole bay was low, indicating MP pollution was not serious in the Yueqing Bay. Due to the discharging of domestic sewage in recent years, fiber-shaped, textile MPs accounted for most in laver and surface water of the Yueqing Bay. These results indicated that MPs in surface water could be trapped by P. haitanensis, thus macroalgae cultivation might be a potential way to alleviate seawater MP pollution in the nearshore areas.


Asunto(s)
Algas Marinas , Contaminantes Químicos del Agua , Bahías , Monitoreo del Ambiente , Microplásticos , Plásticos , Medición de Riesgo , Agua , Contaminantes Químicos del Agua/análisis
2.
J Hazard Mater ; 448: 130814, 2023 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-36706485

RESUMEN

Effects of microplastics on microalgae have not been compared from different habitat. To answer this question, three marine microalgae species (Chlorella marined, Nannochloropsis oculate, and Phaeodactylum tricornutum) and two freshwater species (Chlorella vulgaris and Tetradesmus obliquus) were selected and exposed to the environment relevant concentrations of polystyrene microplastics. The results indicated that microplastics have a significant concentration effect on the growth of microalgae. The attachment of microalgae to microplastics surface and the aggregation of microalgae with each other were observed. Under exposure of microplastics, the photosynthesis of microalgae was inhibited while the antioxidant system was activated, indicating that microplastics had a negative impact on microalgae. At the end of exposure, the oxidative stress status caused by microplastics in marine microalgae were alleviated, but the antioxidant system of freshwater microalgae was still at high levels, indicating a stress response. In addition, integrated biomarker response (IBR) indicated that the effects of microplastics on freshwater microalgae were severer than marine microalgae, which might relate to their differences in removing reactive oxygen species (ROS) effectively and membrane structure. Our study provides a reliable data for understanding the complex effects of microplastics on microalgae, and especially for comparing the differential effects of microplastics among different microalgae.


Asunto(s)
Chlorella vulgaris , Microalgas , Contaminantes Químicos del Agua , Microplásticos/toxicidad , Poliestirenos/toxicidad , Plásticos , Antioxidantes/farmacología , Contaminantes Químicos del Agua/toxicidad , Agua Dulce
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA