Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Biotechnol J ; 19(4): e2400078, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38651251

RESUMEN

Due to their high-quality characteristics, Chinese hamster ovary (CHO) cells have become the most widely used and reliable host cells for the production of recombinant therapeutic proteins in the biomedical field. Previous studies have shown that the m6A reader YTHDF3, which contains the YTH domain, can affect a variety of biological processes by regulating the translation and stability of target mRNAs. This study investigates the effect of YTHDF3 on transgenic CHO cells. The results indicate that stable overexpression of YTHDF3 significantly enhances recombinant protein expression without affecting host cell growth. Transcriptome sequencing indicated that several genes, including translation initiation factor, translation extension factor, and ribosome assembly factor, were upregulated in CHO cells overexpressing YTHDF3. In addition, cycloheximide experiments confirmed that YTHDF3 enhanced transgene expression by promoting translation in CHO cells. In conclusion, the findings in this study provide a novel approach for mammalian cell engineering to increase protein productivity by regulating m6A.


Asunto(s)
Cricetulus , Biosíntesis de Proteínas , Proteínas de Unión al ARN , Proteínas Recombinantes , Animales , Células CHO , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Biosíntesis de Proteínas/genética , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Cricetinae
2.
Biotechnol J ; 18(2): e2200147, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36478399

RESUMEN

Chinese hamster ovary (CHO) cells are expected to acquire the ability to produce higher recombinant therapeutic protein levels using various strategies. Genetic engineering targeting the cell cycle and autophagy pathways in the regulation of cell death in CHO cell cultures has received attention for enhancing the production of therapeutic proteins. In this study, we examined the small-molecule compound apilimod, which was found to have a positive influence on recombinant protein expression in CHO cells. This was confirmed by selective blocking of the cell cycle at the G0/G1 phase. Apilimod treatment resulted in decreased expression of cyclin-dependent kinase 3 (CDK3) and Cyclin C and increased expression of cyclin-dependent kinase suppressor p27Kip1, which are critical regulators of G1 cell cycle progression and important targets controlling cell proliferation. Furthermore, total transcription factor EB (TFEB) was lower in apilimod-treated CHO cells than in control cells, resulting in decreased lysosome biogenesis and autophagy with apilimod treatment. These multiple effects demonstrate the potential of apilimod for development as a novel enhancer for the production of recombinant proteins in CHO cell engineering.


Asunto(s)
Autofagia , Cricetinae , Animales , Cricetulus , Células CHO , Puntos de Control del Ciclo Celular , Ciclo Celular/genética , Proteínas Recombinantes/genética
3.
J Cell Mol Med ; 22(9): 4106-4116, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29851281

RESUMEN

CHO cells are the preferred host for the production of complex pharmaceutical proteins in the biopharmaceutical industry, and genome engineering of CHO cells would benefit product yield and stability. Here, we demonstrated the efficacy of a Dnmt3a-deficient CHO cell line created by CRISPR/Cas9 genome editing technology through gene disruptions in Dnmt3a, which encode the proteins involved in DNA methyltransferases. The transgenes, which were driven by the 2 commonly used CMV and EF1α promoters, were evaluated for their expression level and stability. The methylation levels of CpG sites in the promoter regions and the global DNA were compared in the transfected cells. The Dnmt3a-deficent CHO cell line based on Dnmt3a KO displayed an enhanced long-term stability of transgene expression under the control of the CMV promoter in transfected cells in over 60 passages. Under the CMV promoter, the Dnmt3a-deficent cell line with a high transgene expression displayed a low methylation rate in the promoter region and global DNA. Under the EF1α promoter, the Dnmt3a-deficient and normal cell lines with low transgene expression exhibited high DNA methylation rates. These findings provide insight into cell line modification and design for improved recombinant protein production in CHO and other mammalian cells.


Asunto(s)
Proteína 9 Asociada a CRISPR/genética , Sistemas CRISPR-Cas , ADN (Citosina-5-)-Metiltransferasas/genética , Edición Génica/métodos , ARN Guía de Kinetoplastida/genética , Transgenes , Animales , Secuencia de Bases , Células CHO , Proteína 9 Asociada a CRISPR/metabolismo , Islas de CpG , Cricetulus , Citomegalovirus/genética , Citomegalovirus/metabolismo , ADN (Citosina-5-)-Metiltransferasas/deficiencia , Metilación de ADN , Expresión Génica , Técnicas de Inactivación de Genes , Regiones Promotoras Genéticas , ARN Guía de Kinetoplastida/metabolismo
4.
Genet Mol Biol ; 39(2): 239-47, 2016 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-27192131

RESUMEN

Dunaliella salina, a single-celled marine alga with extreme salt tolerance, is an important model organism for studying fundamental extremophile survival mechanisms and their potential practical applications. In this study, two-dimensional differential in-gel electrophoresis (2D-DIGE) was used to investigate the expression of halotolerant proteins under high (3 M NaCl) and low (0.75 M NaCl) salt concentrations. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF/TOF MS) and bioinformatics were used to identify and characterize the differences among proteins. 2D-DIGE analysis revealed 141 protein spots that were significantly differentially expressed between the two salinities. Twenty-four differentially expressed protein spots were successfully identified by MALDI-TOF/TOF MS, including proteins in the following important categories: molecular chaperones, proteins involved in photosynthesis, proteins involved in respiration and proteins involved in amino acid synthesis. Expression levels of these proteins changed in response to the stress conditions, which suggests that they may be involved in the maintenance of intracellular osmotic pressure, cellular stress responses, physiological changes in metabolism, continuation of photosynthetic activity and other aspects of salt stress. The findings of this study enhance our understanding of the function and mechanisms of various proteins in salt stress.

5.
Exp Ther Med ; 10(5): 1627-1634, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26640529

RESUMEN

The aim of this study was to investigate the protective effects of Xin Mai Jia (XMJ) on atherosclerosis (AS) in rabbits and to explore the underlying mechanisms in order to provide experimental evidence for the clinical application of XMJ. An intraperitoneal injection of vitamin D3, combined with a high-fat diet and sacculus injury, was utilized to establish the AS rabbit model. Following the oral administration of lovastatin, Zhibituo and different dosages of XMJ, respectively, blood was drawn from each rabbit for the detection of blood rheological indicators, such as serum lipids. The pathological changes in the right common carotid artery were observed. Vascular function experiments and the expression detection of common carotid artery-related proteins by immunohistochemistry were conducted. XMJ was observed to decrease the blood lipid levels of the AS rabbits; increase the concentration of high-density lipoprotein and apolipoprotein A; decrease blood viscosity, erythrocyte sedimentation rate and hematocrit; elevate the levels of endothelial nitric oxide synthase (eNOS) and Na+/H+ exchanger 1 in vascular tissues and decrease the levels of angiotensin II receptor, type 1 (AT-1) and endothelin-1 (ET-1). In conclusion, XMJ was shown to lower the blood lipid levels of the experimental AS rabbits, improve the abnormal changes in hemorheology, increase the eNOS content in the vascular tissue, decrease the AT-1 and ET-1 levels and increase the endothelium-dependent vasodilation reaction. XMJ therefore has an anti-AS effect.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA