Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
3.
Ecotoxicol Environ Saf ; 265: 115513, 2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37774541

RESUMEN

Esophageal cancer (EC) is the sixth cause of cancer-related deaths and still is a significant public health problem globally. Nitrosamines exposure represents a major health concern increasing EC risks. Exploring the mechanisms induced by nitrosamines may contribute to the prevention and early detection of EC. However, the mechanism of nitrosamine carcinogenesis remains unclear. Ribonucleic acid export 1 (RAE1), has an important role in mediating diverse cancer types, but, to date, there has been no study for any functional role of RAE1 in esophageal carcinogenesis. Here, we successfully verified the nitrosamine-induced malignant transformation cell (MNNG-M) by xenograft tumor model, based on which it was found that RAE1 was upregulation in the early stage of nitrosamine-induced esophageal carcinogenesis and EC tissues. RAE1 knockdown led to severe blockade in G2/M phase and significant inhibition of proliferation of MNNG-M cells, whereas RAE1 overexpression had the opposite effect. In addition, peroxisome proliferator-activated receptor-alpha (PPARα), was demonstrated as a downstream target gene of RAE1, and its down-regulation reduced lipid accumulation, resulting in causing cells accumulation in the G2/M phase. Mechanistically, we found that RAE1 regulates the lipid metabolism by maintaining the stability of PPARα mRNA. Taken together, our study reveals that RAE1 promotes malignant transformation of human esophageal epithelial cells (Het-1A) by regulating PPARα-mediated lipid metabolism to affect cell cycle progression, and offers a new explanation of the mechanisms underlying esophageal carcinogenesis.

4.
iScience ; 26(4): 106529, 2023 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-37102149

RESUMEN

Chimeric antigen receptor (CAR)-T cells have shown great promise in cancer therapy. However, the anti-tumor efficiency is limited due to the CAR-induced T cell apoptosis or exhaustion. The intracellular domain of CAR comprised of various signaling modules orchestrates CAR-T cell behaviors. The modularity of CAR signaling domain functions as the "mainboard" to assemble diversified downstream signaling components. Here, we implemented the modular recombination strategy to construct a library of CARs with synthetic co-signaling modules adopted from immunoglobin-like superfamily (IgSF) and tumor necrosis factor receptor superfamily (TNFRSF). We quantitatively characterized the signaling behaviors of these recombinants by both NFAT and NF-κB reporter, and identified a set of new CARs with diverse signaling behaviors. Specifically, the 28(NM)-BB(MC) CAR-T cells exhibited improved cytotoxicity and T cell persistence. The synthetic approach can promote our understanding of the signaling principles of CAR molecule, and provide a powerful tool box for CAR-T cell engineering.

5.
Cell Res ; 33(5): 341-354, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36882513

RESUMEN

Tonic signaling of chimeric antigen receptor (CAR), i.e., the spontaneous CAR activation in the absence of tumor antigen stimulation, is considered to be a pivotal event controlling CAR-T efficacy. However, the molecular mechanism underlying the spontaneous CAR signals remains elusive. Here, we unveil that positively charged patches (PCPs) on the surface of the CAR antigen-binding domain mediate CAR clustering and result in CAR tonic signaling. For CARs with high tonic signaling (e.g., GD2.CAR and CSPG4.CAR), reducing PCPs on CARs or boosting ionic strength in the culture medium during ex vivo CAR-T cell expansion minimizes spontaneous CAR activation and alleviates CAR-T cell exhaustion. In contrast, introducing PCPs into the CAR with weak tonic signaling, such as CD19.CAR, results in improved in vivo persistence and superior antitumor function. These results demonstrate that CAR tonic signaling is induced and maintained by PCP-mediated CAR clustering. Notably, the mutations we generated to alter the PCPs maintain the antigen-binding affinity and specificity of the CAR. Therefore, our findings suggest that the rational tuning of PCPs to optimize tonic signaling and in vivo fitness of CAR-T cells is a promising design strategy for the next-generation CAR.


Asunto(s)
Receptores Quiméricos de Antígenos , Receptores Quiméricos de Antígenos/genética , Receptores Quiméricos de Antígenos/metabolismo , Linfocitos T , Inmunoterapia Adoptiva/métodos , Transducción de Señal , Antígenos de Neoplasias/metabolismo
7.
Cell Rep ; 36(6): 109516, 2021 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-34380043

RESUMEN

Although tumor-infiltrating lymphocytes (TILs) maintain their ability to proliferate, persist, and eradicate tumors, they are frequently dysfunctional in situ. By performing both whole-genome CRISPR and metabolic inhibitor screens, we identify that nicotinamide phosphoribosyltransferase (NAMPT) is required for T cell activation. NAMPT is low in TILs, and its expression is controlled by the transcriptional factor Tubby (TUB), whose activity depends on the T cell receptor-phospholipase C gamma (TCR-PLCγ) signaling axis. The intracellular level of NAD+, whose synthesis is dependent on the NAMPT-mediated salvage pathway, is also decreased in TILs. Liquid chromatography-mass spectrometry (LC-MS) and isotopic labeling studies confirm that NAD+ depletion led to suppressed glycolysis, disrupted mitochondrial function, and dampened ATP synthesis. Excitingly, both adoptive CAR-T and anti-PD1 immune checkpoint blockade mouse models demonstrate that NAD+ supplementation enhanced the tumor-killing efficacy of T cells. Collectively, this study reveals that an impaired TCR-TUB-NAMPT-NAD+ axis leads to T cell dysfunction in the tumor microenvironment, and an over-the-counter nutrient supplement of NAD+ could boost T-cell-based immunotherapy.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Linfocitos Infiltrantes de Tumor/inmunología , NAD/farmacología , Neoplasias/inmunología , Neoplasias/patología , Nicotinamida Fosforribosiltransferasa/genética , Linfocitos T/inmunología , Transcripción Genética , Traslado Adoptivo , Animales , Muerte Celular/efectos de los fármacos , Línea Celular Tumoral , Metabolismo Energético/efectos de los fármacos , Humanos , Activación de Linfocitos/efectos de los fármacos , Linfocitos Infiltrantes de Tumor/efectos de los fármacos , Ratones Endogámicos NOD , Neoplasias/genética , Nicotinamida Fosforribosiltransferasa/metabolismo , Linfocitos T/efectos de los fármacos , Transcripción Genética/efectos de los fármacos
8.
Immunity ; 53(2): 456-470.e6, 2020 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-32758419

RESUMEN

Clinical evidence suggests that poor persistence of chimeric antigen receptor-T cells (CAR-T) in patients limits therapeutic efficacy. Here, we designed a CAR with recyclable capability to promote in vivo persistence and to sustain antitumor activity. We showed that the engagement of tumor antigens induced rapid ubiquitination of CARs, causing CAR downmodulation followed by lysosomal degradation. Blocking CAR ubiquitination by mutating all lysines in the CAR cytoplasmic domain (CARKR) markedly repressed CAR downmodulation by inhibiting lysosomal degradation while enhancing recycling of internalized CARs back to the cell surface. Upon encountering tumor antigens, CARKR-T cells ameliorated the loss of surface CARs, which promoted their long-term killing capacity. Moreover, CARKR-T cells containing 4-1BB signaling domains displayed elevated endosomal 4-1BB signaling that enhanced oxidative phosphorylation and promoted memory T cell differentiation, leading to superior persistence in vivo. Collectively, our study provides a straightforward strategy to optimize CAR-T antitumor efficacy by redirecting CAR trafficking.


Asunto(s)
Neoplasias/terapia , Receptores Quiméricos de Antígenos/inmunología , Linfocitos T/inmunología , Linfocitos T/trasplante , Animales , Línea Celular Tumoral , Regulación hacia Abajo , Femenino , Humanos , Memoria Inmunológica/inmunología , Inmunoterapia Adoptiva , Células Jurkat , Masculino , Ratones , Ratones Endogámicos NOD , Ratones Noqueados , Ratones SCID , Mitocondrias/inmunología , Neoplasias/inmunología , Neoplasias/patología , Linfocitos T/citología , Miembro 9 de la Superfamilia de Receptores de Factores de Necrosis Tumoral/metabolismo , Ubiquitinación , Ensayos Antitumor por Modelo de Xenoinjerto
9.
Acta Crystallogr Sect E Struct Rep Online ; 66(Pt 12): m1577-8, 2010 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-21589263

RESUMEN

The title compound, [Co(C(12)H(8)N(2))(H(2)O)(4)](2)[Co(H(2)O)(6)](C(11)H(7)O(8))(2)·4H(2)O, was obtanied by the reaction of cobalt acetate with 3,5-bis-(carb-oxy-meth-oxy)benzoic acid and 1,10-phenanthroline. The asymmetric unit contains one tetra-aqua-(1,10-phenanthroline)cobalt(II) cation, one half of a hexa-aqua-cobalt(II) cation that is completed by inversion symmetry, one 3,5-bis-(carboxyl-atometh-oxy)benzoate trianion and two lattice water mol-ecules. The two Co(II) atoms each show a slightly distorted octa-hedral coordination (CoO(6) and CoO(4)N(2)). The cations, anions and lattice water mol-ecules are linked by an intricate network of O-H⋯O hydrogen bonds into a three-dimensional structure.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA