Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
ACS Omega ; 8(50): 47723-47734, 2023 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-38144114

RESUMEN

The cell-to-cell signaling role of d-amino acids (d-AAs) in the mammalian endocrine system, particularly in the islets of Langerhans, has drawn growing interest for their potential involvement in modulating glucose metabolism. Previous studies found colocalization of serine racemase [produces d-serine (d-Ser)] and d-alanine (d-Ala) within insulin-secreting beta cells and d-aspartate (d-Asp) within glucagon-secreting alpha cells. Expressed in the islets, functional N-methyl-d-aspartate receptors are involved in the modulation of glucose-stimulated insulin secretion and have binding sites for several d-AAs. However, knowledge of the regulation of d-AA levels in the islets during glucose stimulation as well as the response of islets to different levels of extracellular d-AAs is limited. In this study, we determined the intracellular and extracellular levels of d-Ser, d-Ala, and d-Asp in cultures of isolated rodent islets exposed to different levels of extracellular glucose. We found that the intracellular levels of the enantiomers demonstrated large variability and, in general, were not affected by extracellular glucose levels. However, significantly lower levels of extracellular d-Ser and d-Ala were observed in the islet media supplemented with 20 mM concentration of glucose compared to the control condition utilizing 3 mM glucose. Glucose-induced oscillations of intracellular free calcium concentration ([Ca2+]i), a proxy for insulin secretion, were modulated by the exogenous application of d-Ser and d-Ala but not by their l-stereoisomers. Our results provide new insights into the roles of d-AAs in the biochemistry and function of pancreatic islets.

2.
FASEB J ; 36(8): e22446, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35816159

RESUMEN

d-alanine (d-Ala) and several other d-amino acids (d-AAs) act as hormones and neuromodulators in nervous and endocrine systems. Unlike the endogenously synthesized d-serine in animals, d-Ala may be from exogenous sources, e.g., diet and intestinal microorganisms. However, it is unclear if the capability to produce d-Ala and other d-AAs varies among different microbial strains in the gut. We isolated individual microorganisms of rat gut microbiota and profiled their d-AA production in vitro, focusing on d-Ala. Serial dilutions of intestinal contents from adult male rats were plated on agar to obtain clonal cultures. Using MALDI-TOF MS for rapid strain typing, we identified 38 unique isolates, grouped into 11 species based on 16S rRNA gene sequences. We then used two-tier screening to profile bacterial d-AA production, combining a d-amino acid oxidase-based enzymatic assay for rapid assessment of non-acidic d-AA amount and chiral LC-MS/MS to quantify individual d-AAs, revealing 19 out of the 38 isolated strains as d-AA producers. LC-MS/MS analysis of the eight top d-AA producers showed high levels of d-Ala in all strains tested, with substantial inter- and intra-species variations. Though results from the enzymatic assay and LC-MS/MS analysis aligned well, LC-MS/MS further revealed the existence of d-glutamate and d-aspartate, which are poor substrates for this enzymatic assay. We observed large inter- and intra-species variation of d-AA production profiles from rat gut microbiome species, demonstrating the importance of chemical profiling of gut microbiota in addition to sequencing, furthering the idea that microbial metabolites modulate host physiology.


Asunto(s)
Microbioma Gastrointestinal , Alanina , Aminoácidos/metabolismo , Animales , Cromatografía Liquida , Microbioma Gastrointestinal/fisiología , Masculino , ARN Ribosómico 16S/genética , Ratas , Espectrometría de Masas en Tándem
3.
Biochim Biophys Acta Proteins Proteom ; 1868(11): 140482, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32640293

RESUMEN

d-Alanine (d-Ala) is an unusual endogenous amino acid present in invertebrates and vertebrates. Compared to its l-isomer, the characterization of d-Ala is challenging because of the need for chiral resolution and the low amounts of the d-enantiomer present. With recent improvements in measurement capabilities, research on d-Ala, along with other d-amino acids, has been growing, especially as the functional significance of d-Ala in the mammalian nervous and endocrine systems is becoming known. Here we provide an overview of the distribution, origin, function, and disease implications of d-Ala.


Asunto(s)
Alanina/fisiología , Alanina/metabolismo , Animales , Diabetes Mellitus/metabolismo , Humanos , Enfermedades Renales/metabolismo , Cirrosis Hepática/metabolismo , Trastornos Mentales/metabolismo , Neoplasias/metabolismo , Enfermedades del Sistema Nervioso/metabolismo , Hipertensión Ocular/metabolismo , Síndrome del Intestino Corto/metabolismo , Fumar/metabolismo
4.
Chem Res Toxicol ; 33(3): 806-816, 2020 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-32013395

RESUMEN

Cobalt phosphate engineered nanomaterials (ENMs) are an important class of materials that are used as lithium ion battery cathodes, catalysts, and potentially as super capacitors. As production of these nanomaterials increases, so does the likelihood of their environmental release; however, to date, there are relatively few investigations of the impact of nanoscale metal phosphates on biological systems. Furthermore, nanomaterials used in commercial applications are often multiphase materials, and analysis of the toxic potential of mixtures of nanomaterials has been rare. In this work, we studied the interactions of two model environmental bacteria, Shewanella oneidensis MR-1 and Bacillus subtilis, with a multiphase lithiated cobalt phosphate (mLCP) nanomaterial. Using a growth-based viability assay, we found that mLCP was toxic to both bacteria used in this study. To understand the observed toxicity, we screened for production of reactive oxygen species (ROS) and release of Co2+ from mLCP using three abiotic fluorophores. We also used Newport Green DCF dye to show that cobalt was taken up by the bacteria after mLCP exposure. Using transmission electron microscopy, we noted that the mLCP was not associated with the bacterial cell surface. In order for us to further probe the mechanism of interaction of mLCP, the bacteria were exposed to an equivalent dose of cobalt ions that dissolved from mLCP, which recapitulated the changes in viability when the bacteria were exposed to mLCP, and it also recapitulated the observed bacterial uptake of cobalt. Taken together, this implicates the release of cobalt ions and their subsequent uptake by the bacteria as the major toxicity mechanism of mLCP. The properties of the ENM govern the release rate of cobalt, but the toxicity does not arise from nanospecific effects-and importantly, the chemical composition of the ENM may dictate the oxidation state of the metal centers and thus limit ROS production.


Asunto(s)
Bacillus subtilis/efectos de los fármacos , Nanoestructuras/toxicidad , Fosfinas/toxicidad , Shewanella/efectos de los fármacos , Bacillus subtilis/química , Bacillus subtilis/crecimiento & desarrollo , Relación Dosis-Respuesta a Droga , Microscopía Electrónica de Transmisión , Nanoestructuras/química , Tamaño de la Partícula , Fosfinas/síntesis química , Fosfinas/química , Shewanella/química , Shewanella/crecimiento & desarrollo , Propiedades de Superficie
5.
Chem Sci ; 11(41): 11244-11258, 2020 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-34094365

RESUMEN

The increasing use of nanoscale lithium nickel manganese cobalt oxide (Li x Ni y Mn z Co1-y-z O2, NMC) as a cathode material in lithium-ion batteries poses risk to the environment. Learning toxicity mechanisms on molecular levels is critical to promote proactive risk assessment of these complex nanomaterials and inform their sustainable development. We focused on DNA damage as a toxicity mechanism and profiled in depth chemical and biological changes linked to DNA damage in two environmentally relevant bacteria upon nano-NMC exposure. DNA damage occurred in both bacteria, characterized by double-strand breakage and increased levels of many putative chemical modifications on bacterial DNA bases related to direct oxidative stress and lipid peroxidation, measured by cutting-edge DNA adductomic techniques. Chemical probes indicated elevated intracellular reactive oxygen species and transition metal ions, in agreement with DNA adductomics and gene expression analysis. By integrating multi-dimensional datasets from chemical and biological measurements, we present rich mechanistic insights on nano-NMC-induced DNA damage in bacteria, providing targets for biomarkers in the risk assessment of reactive materials that may be extrapolated to other nano-bio interactions.

6.
Chem Commun (Camb) ; 54(91): 12787-12803, 2018 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-30357136

RESUMEN

The field of nanotoxicology has evolved rapidly in the past two decades. Starting from simple nanomaterials and established toxicity assays, researchers' foci have shifted towards understanding the mechanisms underlying nanotoxicity. Furthermore, an important goal has been linking nanomaterial properties to biological responses to build predictive models for safer nanomaterial design. Here, we provide our perspectives, as analytical chemists, on the analytical challenges in nanotoxicology as the field is entering its third decade. We have identified these challenges to include understanding causal relationships in mechanistic studies of nanotoxicity, overcoming nanomaterial interferences for accurate nanotoxicity assays, connecting nanoparticle interactions to cellular responses at the single-cell level, and making chemical measurements at the nano-bio interface in real-time and in situ.

7.
Langmuir ; 34(15): 4614-4625, 2018 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-29558808

RESUMEN

The article describes the interactions between poly (oxonorbornenes) (PONs)-coated gold nanoparticles (AuNPs) with phospholipid vesicles and shows that the strength of these interactions strongly depends on the molecular structure of PONs, specifically their amine/alkyl side chain ratio. PONs, which are a recently introduced class of cationic polyelectrolytes, can be systematically varied to control the amine/alkyl ratio and to explore how the chemical character of cationic polyelectrolytes affects their interactions and the interactions of their nanoparticle conjugates with model membranes. Our study shows that increasing the amine/alkyl ratio by copolymerization of diamine and 1:1 amine/butyl oxonorbornene monomers impacts the availability of PONs amine/ammonium functional groups to interact with phospholipid membranes, the PONs surface coverage on AuNPs, and the membrane disruption activity of free PONs and PONs-AuNPs. The study makes use of transmission electron microscopy, UV-vis spectroscopy, dynamic light scattering, thermogravimetric analysis, fluorescamine assay, ζ-potential measurements, and X-ray photoelectron spectroscopy measurements to characterize the PONs-AuNPs' size, size distribution, aggregation state, surface charge, and PONs surface coverage. The study also makes use of real-time fluorescence measurements of fluorescent liposomes before and during exposure to free PONs and PONs-AuNPs to determine the membrane disruption activity of free PONs and PONs-AuNPs. As commonly observed with cationic polyelectrolytes, both free PONs and PONs-AuNPs display significant membrane disruption activity. Under conditions where the amine/alkyl ratio in PONs maximizes PONs surface coverage, the membrane disruption activity of PONs-AuNPs is about 10-fold higher than the membrane disruption activity of the same free PONs. This is attributed to the increased local concentration of ammonium ions when PONs-AuNPs interact with the liposome membranes. In contrast, the hydrophobicity of amine-rich PONs, which are made for example from diamine oxonorbornene monomers, is significantly reduced. This leads to a significant reduction of PON surface coverage on AuNPs and in turn to a significant decrease in membrane disruption.


Asunto(s)
Aminas/química , Oro/química , Nanopartículas del Metal/química , Dispersión Dinámica de Luz , Microscopía Electrónica de Transmisión , Norbornanos/química , Relación Estructura-Actividad
8.
Anal Chem ; 89(3): 2057-2064, 2017 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-28208291

RESUMEN

Current high-throughput approaches evaluating toxicity of chemical agents toward bacteria typically rely on optical assays, such as luminescence and absorbance, to probe the viability of the bacteria. However, when applied to toxicity induced by nanomaterials, scattering and absorbance from the nanomaterials act as interferences that complicate quantitative analysis. Herein, we describe a bacterial viability assay that is free of optical interference from nanomaterials and can be performed in a high-throughput format on 96-well plates. In this assay, bacteria were exposed to various materials and then diluted by a large factor into fresh growth medium. The large dilution ensured minimal optical interference from the nanomaterial when reading optical density, and the residue left from the exposure mixture after dilution was confirmed not to impact the bacterial growth profile. The fractions of viable cells after exposure were allowed to grow in fresh medium to generate measurable growth curves. Bacterial viability was then quantitatively correlated to the delay of bacterial growth compared to a reference regarded as 100% viable cells; data analysis was inspired by that in quantitative polymerase chain reactions, where the delay in the amplification curve is correlated to the starting amount of the template nucleic acid. Fast and robust data analysis was achieved by developing computer algorithms carried out using R. This method was tested on four bacterial strains, including both Gram-negative and Gram-positive bacteria, showing great potential for application to all culturable bacterial strains. With the increasing diversity of engineered nanomaterials being considered for large-scale use, this high-throughput screening method will facilitate rapid screening of nanomaterial toxicity and thus inform the risk assessment of nanoparticles in a timely fashion.


Asunto(s)
Bacillus subtilis/efectos de los fármacos , Bacillus subtilis/crecimiento & desarrollo , Ensayos Analíticos de Alto Rendimiento/métodos , Nanoestructuras/toxicidad , Shewanella/efectos de los fármacos , Shewanella/crecimiento & desarrollo , Pruebas de Toxicidad/métodos , Algoritmos , Antibacterianos/farmacología , Automatización , Pruebas de Sensibilidad Microbiana , Reacción en Cadena de la Polimerasa/métodos
9.
Anal Chem ; 89(3): 1823-1830, 2017 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-28078889

RESUMEN

Polyelectrolyte (PE) wrapping of colloidal nanoparticles (NPs) is a standard method to control NP surface chemistry and charge. Because excess polyelectrolytes are usually employed in the surface modification process, it is critical to evaluate different purification strategies to obtain a clean final product and thus avoid ambiguities in the source of effects on biological systems. In this work, 4 nm diameter gold nanoparticles (AuNPs) were wrapped with 15 kDa poly(allylamine hydrochloride) (PAH), and three purification strategies were applied: (a) diafiltration or either (b) one round or (c) two rounds of centrifugation. The bacterial toxicity of each of these three PAH-AuNP samples was evaluated for the bacterium Shewanella oneidensis MR-1 and is quantitatively correlated with the amount of unbound PAH molecules in the AuNP suspensions, as judged by X-ray photoelectron spectroscopy, nuclear magnetic resonance experiments and quantification using fluorescent assay. Dialysis experiments show that, for a 15 kDa polyelectrolyte, a 50 kDa dialysis membrane is not sufficient to remove all PAH polymers. Together, these data showcase the importance of choosing a proper postsynthesis purification method for polyelectrolyte-wrapped NPs and reveal that apparent toxicity results may be due to unintended free wrapping agents such as polyelectrolytes.


Asunto(s)
Coloides/química , Oro/química , Nanopartículas del Metal/toxicidad , Poliaminas/química , Polielectrolitos/análisis , Shewanella/efectos de los fármacos , Centrifugación , Filtración/métodos , Fluorescencia , Espectroscopía de Resonancia Magnética , Membranas Artificiales , Nanopartículas del Metal/química , Espectroscopía de Fotoelectrones , Poliaminas/análisis , Polielectrolitos/aislamiento & purificación , Pruebas de Toxicidad/métodos
10.
Chemosphere ; 168: 1158-1168, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27823777

RESUMEN

Toxicity of nanomaterials to ecological systems has recently emerged as an important field of research, and thus, many researchers are exploring the mechanisms of how nanoparticles impact organisms. Herein, we probe the mechanisms of bacteria-nanoparticle interaction by investigating how TiO2 nanoparticles impact a model organism, the metal-reducing bacterium Shewanella oneidensis MR-1. In addition to examining the effect of TiO2 exposure, the effect of synergistic simulated solar irradiation containing UV was explored in this study, as TiO2 nanoparticles are known photocatalysts. The data reveal that TiO2 nanoparticles cause an inhibition of S. oneidensis growth at high dosage without compromising cell viability, yet co-exposure of nanoparticles and illumination does not increase the adverse effects on bacterial growth relative to TiO2 alone. Measurements of intracellular reactive oxygen species and riboflavin secretion, on the same nanoparticle-exposed bacteria, reveal that TiO2 nanoparticles have no effect on these cell functions, but application of UV-containing illumination with TiO2 nanoparticles has an impact on the level of riboflavin outside bacterial cells. Finally, gene expression studies were employed to explore how cells respond to TiO2 nanoparticles and illumination, and these results were correlated with cell growth and cell function assessment. Together these data suggest a minimal impact of TiO2 NPs and simulated solar irradiation containing UV on S. oneidensis MR-1, and the minimal impact could be accounted for by the nutrient-rich medium used in this work. These measurements demonstrate a comprehensive scheme combining various analytical tools to enable a mechanistic understanding of nanoparticle-cell interactions and to evaluate the potential adverse effects of nanoparticles beyond viability/growth considerations.


Asunto(s)
Nanopartículas del Metal/toxicidad , Especies Reactivas de Oxígeno/metabolismo , Riboflavina/metabolismo , Shewanella/efectos de los fármacos , Shewanella/crecimiento & desarrollo , Titanio/toxicidad , Supervivencia Celular/efectos de los fármacos , Expresión Génica/efectos de los fármacos , Luz , Estrés Oxidativo/efectos de los fármacos , Shewanella/metabolismo , Energía Solar , Rayos Ultravioleta
11.
Analyst ; 141(20): 5674-5688, 2016 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-27549146

RESUMEN

The cytoskeleton is a key cellular structure that is important in the control of cellular movement, structure, and sensing. To successfully image the individual cytoskeleton components, high resolution and super-resolution fluorescence imaging methods are needed. This review covers the three basic cytoskeletal elements and the relative benefits and drawbacks of fixed versus live cell imaging before moving on to recent studies using high resolution and super-resolution techniques. The techniques covered include the near-diffraction limited imaging methods of confocal microscopy and TIRF microscopy and the super-resolution fluorescence imaging methods of STORM, PALM, and STED.


Asunto(s)
Citoesqueleto , Microscopía Confocal , Microscopía Fluorescente , Actinas/análisis , Animales , Colorantes Fluorescentes , Humanos , Filamentos Intermedios , Microtúbulos
12.
Chem Sci ; 6(9): 5186-5196, 2015 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-29449924

RESUMEN

Although nanomaterials facilitate significant technological advancement in our society, their potential impacts on the environment are yet to be fully understood. In this study, two environmentally relevant bacteria, Shewanella oneidensis and Bacillus subtilis, have been used as model organisms to elucidate the molecular interactions between these bacterial classes and Au nanoparticles (AuNPs) with well-controlled and well-characterized surface chemistries: anionic 3-mercaptopropionic acid (MPA), cationic 3-mercaptopropylamine (MPNH2), and the cationic polyelectrolyte poly(allylamine hydrochloride) (PAH). The data demonstrate that cationic, especially polyelectrolyte-wrapped AuNPs, were more toxic to both the Gram-negative and Gram-positive bacteria. The levels of toxicity observed were closely related to the percentage of cells with AuNPs associated with the cell surface as measured in situ using flow cytometry. The NP concentration-dependent binding profiles were drastically different for the two bacteria strains, suggesting the critical role of bacterial cell surface chemistry in determining nanoparticle association, and thereby, biological impact.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA