Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
J Org Chem ; 88(21): 15404-15413, 2023 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-37853516

RESUMEN

This density functional theory study explores the detailed mechanism of nickel-catalyzed hydroalkylation of the C═C bond of N-Cbz-protected enamines (Cbz = benzyloxycarbonyl) with alkyl iodides to give chiral α-alkyl amines. The active catalyst (biOx)NiH, a chiral bioxazoline (biOx)-chelated Ni(I) hydride, exhibits chemoselectivity that favors single electron transfer to the alkyl iodide over C═C hydrometalation with the enamine. This generates an alkyl radical and a Ni(II) intermediate, which takes up the enamine substrate CbzNHCH═CH2CH3 via a regio- and enantioselective C═C insertion into the NiII-H bond. The resulting Ni(II) alkyl complex combines with the alkyl radical, forming a Ni(III) intermediate, from which the alkyl-alkyl reductive elimination delivers the chiral amine product. The regioselectivity arises from a combination of orbital and noncovalent interactions, both of which are induced by the Cbz group. Thus, Cbz plays an additional role in controlling regioselectivity. The enantioselectivity stems from the differing distortion energies of CbzNHCH═CH2CH3. The reductive elimination is the rate-determining step (ΔG⧧ = 18.7 kcal/mol). In addition, the calculations show a noninnocent behavior of the biOx ligand induced by the insertion of CbzNHCH═CH2CH3 into the Ni-H bond of (biOx)NiH. These computationally gained insights can have implications for developing new Ni(I)-catalyzed reactions.

2.
Chem Sci ; 14(36): 9696-9703, 2023 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-37736637

RESUMEN

Ring-opening of bicyclo[1.1.0]butanes (BCBs) is emerging as a powerful strategy for 1,3-difunctionalized cyclobutane synthesis. However, reported radical strain-release reactions are typically plagued with diastereoselectivity issues. Herein, an atom-economic protocol for the highly chemo- and diastereoselective polar strain-release ring-opening of BCBs with hydroxyarenes catalyzed by a π-acid catalyst AgBF4 has been developed. The use of readily available starting materials, low catalyst loading, high selectivity (up to >98 : 2 d.r.), a broad substrate scope, ease of scale-up, and versatile functionalizations of the cyclobutane products make this approach very attractive for the synthesis of 1,1,3-trisubstituted cyclobutanes. Moreover, control experiments and theoretical calculations were performed to illustrate the reaction mechanism and selectivity.

3.
J Am Chem Soc ; 144(11): 4952-4965, 2022 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-35274949

RESUMEN

We report a general protocol for the convergent synthesis of 1,4-dicarbonyl Z-alkenes form alkynes using α-diazo sulfonium triflate and water. The C═O, C═C, and C-H bonds are formed under mild conditions with a wide range of functional groups tolerated. The reaction exhibits excellent Z-selectivity and complete regioselectivity. The resulting 1,4-dicarbonyl Z-alkenes can smoothly undergo follow-up conversion to a variety of heteroaromatic scaffolds. Moreover, the reaction also provides a facile access to the corresponding deuterated Z-alkenes and deuterated heteroarenes with a high level of deuterium incorporation (90-97% D-inc.) by directly using D2O, thus rendering the method highly valuable. The comprehensive mechanistic studies indicate that a free carbyne radical intermediate is formed via the photocatalytic single electron transfer process, and KH2PO4 plays a crucial role in significant improvements on yield and selectivity based on density-functional theory calculations, providing a new direction for radical coupling reactions of diazo compounds.


Asunto(s)
Alquenos , Alquinos , Alquenos/química , Alquinos/química , Catálisis , Radicales Libres , Agua
4.
Nat Commun ; 13(1): 1672, 2022 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-35354823

RESUMEN

Pt(II) and Au(III)-mediated intermolecular divergent annulations of benzofurazans and ynamides highlighted the N- to O-selectivity of tunable metal carbene intermediates. PtCl2 with a bulky phosphite ligand resulted in the specific synthesis of six-membered quinoxaline N-oxides and successfully suppressed the in-situ deoxygenation of N-oxides. On the other hand, an unique gold(III) catalyst (2,6-di-MeO-PyrAuCl3) led to the five-membered ring products, benzimidazoles. A broad scope of functional groups was well compatible, delivering better yields and selectivities in contrast to conventional gold(I) catalysts. The different behavior of presumed platinum(II) and gold(III) carbenes with respect to chemoselectivity was intensively examined by experiments and DFT calculations. A detailed mechanistic study, based on DFT calculations, revealed that the highly electrophilic carbocation-like gold(III) carbene triggers an oxophilic cyclization, followed by a cascade ring contraction and acyl migration. On the contrary, the Pt carbene species is less cationic, favoring the formation of the six-membered ring via N-attack.


Asunto(s)
Oro , Platino (Metal) , Ciclización , Metano/análogos & derivados
5.
Spectrochim Acta A Mol Biomol Spectrosc ; 245: 118887, 2021 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-32927301

RESUMEN

Developing a reliable fluorescence probe is crucial for accurately monitoring sodium dithionite (Na2S2O4, SDT) in biosystems, but the current reported azo-based ones suffers from short excitation/emission wavelengths and relative slow response speed. To address this issue, we herein present a novel near-infrared emissive fluorescence probe for SDT, namely DCM-MQ, consisting of a dicyanomethylene-benzopyran fluorogenic reporter and a 1-methylquinolinium as recognition moiety. On the basis of the specific reduction mechanism, DCM-MQ exhibited a rapid colorimetric and fluorescent recognition for SDT (less than 3 s) with large Stokes shift (112 nm) and high sensitivity (detection limit was 19 nM). The fluorescence imaging results demonstrate that DCM-MQ is competent for monitoring SDT in living systems.


Asunto(s)
Colorantes Fluorescentes , Imagen Óptica , Ditionita , Células HeLa , Humanos , Espectrometría de Fluorescencia
6.
Angew Chem Int Ed Engl ; 60(10): 5141-5146, 2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33252181

RESUMEN

Reported here is a concise total synthesis of (-)-berkelic acid in eight linear steps. This synthesis features a Catellani reaction/oxa-Michael cascade for the construction of the isochroman scaffold, a one-pot deprotection/spiroacetalization operation for the formation of the tetracyclic core structure, and a late-stage Ni-catalyzed reductive coupling for the introduction of the lateral chain. Notably, four stereocenters are established from a single existing chiral center with excellent stereocontrol during the deprotection/spiroacetalization process. Stereocontrol of the intriguing deprotection/spiroacetalization process is supported by DFT calculations.

7.
Org Lett ; 23(1): 207-212, 2021 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-33305569

RESUMEN

A visible-light-promoted method for generating amidyl radicals from N-fluorosulfonamides via a manganese-catalyzed N-F bond activation strategy is reported. This protocol employs a simple manganese complex, Mn2(CO)10, as the precatalyst and a cheap silane, (MeO)3SiH, as both the hydrogen-atom donor and the F-atom acceptor, enabling intramolecular/intermolecular hydroaminations of alkenes, two-component carboamination of alkenes, and even three-component carboamination of alkenes. A wide range of valuable aliphatic sulfonamides can be readily prepared using these practical reactions.

8.
Angew Chem Int Ed Engl ; 59(11): 4428-4433, 2020 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-31912602

RESUMEN

A simple and efficient protocol to generate amidyl radicals from amine functionalities through a manganese-mediated atom-transfer reaction has been developed. This approach employs an earth-abundant and inexpensive manganese complex, Mn2 (CO)10 , as the catalyst and visible light as the energy input. Using this strategy, site-selective chlorination of unactivated C(sp3 )-H bonds of aliphatic amines and intramolecular/intermolecular chloroaminations of unactivated alkenes were readily realized under mild reaction conditions, thus providing efficient access to a range of synthetically valuable alkyl chlorides, chlorinated pyrrolidines, and vicinal chloroamine derivatives. These practical reactions exhibit a broad substrate scope and tolerate a wide array of functional groups, and complex molecules including various marketed drug derivatives.

9.
Angew Chem Int Ed Engl ; 59(6): 2360-2364, 2020 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-31799790

RESUMEN

A rhodium-catalyzed remote C(sp3 )-H borylation of silyl enol ethers (SEEs, E/Z mixtures) by alkene isomerization and hydroboration is reported. The reaction exhibits mild reaction conditions and excellent functional-group tolerance. This method is compatible with an array of SEEs, including linear and branched SEEs derived from aldehydes and ketones, and provides direct access to a broad range of structurally diverse 1,n-borylethers in excellent regioselectivities and good yields. These compounds are precursors to various valuable chemicals, such as 1,n-diols and aminoalcohols.

10.
Chem Commun (Camb) ; 53(89): 12148-12151, 2017 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-29075699

RESUMEN

We herein report a new H2 activation mechanism to elucidate the N-formylation of amines with CO2 and H2, catalyzed by Ru(ii) pincer complexes in the absence of exogenous additives. Furthermore, we show that the mechanism could be applied to other types of Ru(ii) pincer complexes and computed iron analogs.

11.
Chem Sci ; 8(3): 2413-2425, 2017 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-28451348

RESUMEN

Early transition metals (TMs), such as titanium, generally resist undergoing reductive elimination to form C-X bonds due to their weak electronegativity. By analyzing the mechanism of the titanium-catalyzed synthesis of pyrroles from alkynes and diazenes, the present study revealed that titanium is able to promote C-N bond formation via an unconventional elimination pathway, passing through a comparatively stable masked TiII complex (i.e., IM4) rather than pyrrole directly. The formation of IM4 originates from the bilateral donation and back-donation between Ti and the pyrrole ligand. Formally, it could be considered that the two electrons resulting from the unconventional reductive elimination are temporarily buffered by back-donation to a symmetry-allowed unoccupied π-orbital of the pyrrole ring in IM4 rather than becoming a lone pair on a Ti center as adopted in the catalysis of late TMs. Because of its stability, IM4 requires additional oxidation by diazene to liberate pyrrole. The triplet counterpart (IM4T ) of IM4 is more stable than IM4, but the elimination is unlikely to reach IM4T , because the process is spin-forbidden and the spin-orbit coupling is weak. Alternatively, one may consider the forming pyrrole in IM4 as a redox-active ligand, reserving the two electrons resulting from the formal reductive elimination and then releasing the electrons when IM4 is oxidized by diazene. These insights allow us to propose the conditions for early TMs to undergo a similar elimination, whereby the forming product will have symmetry-allowed frontier molecular orbitals to form donation and back-donation bonding with a TM center and a substrate possessing a comparatively strong oxidizing ability to oxidize an IM4-like intermediate for product release. These insights may provide another way of constructing C-X bonds through a similar reductive elimination pathway, using early TM catalysts.

12.
J Org Chem ; 82(2): 1195-1204, 2017 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-28005358

RESUMEN

Density functional theory calculations have been performed to provide mechanistic insight into a series of Cp*CoIII- and Cp*RhIII-catalyzed directed C-H bond functionalizations with diazo-compound substrates. Co-based catalysis proceeds through five steps: C-H bond activation; C-C coupling via a concerted 1,2-aryl transfer; proto-demetalation; nucleophilic addition; and solvent-assisted methanol elimination. C-H bond activation is predicted to be reversible, consistent with deuterium-scrambling experiments. The higher Lewis acidity of Co compared to Rh for two otherwise identical catalysts increases the susceptibility of a coordinated carbonyl group to nucleophilic addition in the former, facilitating the formation of cyclized products not observed for Rh. Methanol elimination is predicted to be the turnover-limiting step for one substrate, and this is facilitated by solvent 2,2,2-trifluoroethanol (TFE) acting as a proton shuttle. Theory suggests that further tuning of acidity may offer opportunities for improving catalysis. We also assess the role of a pyridine group that leads to a different series of final steps in one Rh-based catalytic cycle, thereby enabling access to the otherwise suppressed cyclization product. Our study of an alternative Rh-based system having acetate ligands replaced with MeCN indicates that C-H bond activation is sensitive to those ligands and variation can affect which step is turnover-limiting.

14.
J Am Chem Soc ; 137(19): 6279-91, 2015 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-25915086

RESUMEN

Metal-organic cooperative catalysis (MOCC) has been successfully applied for hydroacylation of olefins with aldehydes via directed C(sp(2))-H functionalization. Most recently, it was reported that an elaborated MOCC system, containing Rh(I) catalyst and 7-azaindoline (L1) cocatalyst, could even catalyze ketone α-alkylation with unactivated olefins via C(sp(3))-H activation. Herein we present a density functional theory study to understand the mechanism of the challenging ketone α-alkylation. The transformation uses IMesRh(I)Cl(L1)(CH2═CH2) as an active catalyst and proceeds via sequential seven steps, including ketone condensation with L1, giving enamine 1b; 1b coordination to Rh(I) active catalyst, generating Rh(I)-1b intermediate; C(sp(2))-H oxidative addition, leading to a Rh(III)-H hydride; olefin migratory insertion into Rh(III)-H bond; reductive elimination, generating Rh(I)-1c(alkylated 1b) intermediate; decoordination of 1c, liberating 1c and regenerating Rh(I) active catalyst; and hydrolysis of 1c, furnishing the final α-alkylation product 1d and regenerating L1. Among the seven steps, reductive elimination is the rate-determining step. The C-H bond preactivation via agostic interaction is crucial for the bond activation. The mechanism rationalizes the experimental puzzles: why only L1 among several candidates performed perfectly, whereas others failed, and why Wilkinson's catalyst commonly used in MOCC systems performed poorly. Based on the established mechanism and stimulated by other relevant experimental reactions, we attempted to enrich MOCC chemistry computationally, exemplifying how to develop new organic catalysts and proposing L7 to be an alternative for L1 and demonstrating the great potential of expanding the hitherto exclusive use of Rh(I)/Rh(III) manifold to Co(0)/Co(II) redox cycling in developing MOCC systems.

15.
J Am Chem Soc ; 137(13): 4435-44, 2015 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-25794590

RESUMEN

Palladium-catalyzed C-H functionalization of acyldiazomethanes with aryl iodides has been developed. This reaction is featured by the retention of the diazo functionality in the transformation, thus constituting a novel method for the introduction of diazo functionality to organic molecules. Consistent with the experimental results, the density functional theory (DFT) calculation indicates that the formation of Pd-carbene species in the catalytic cycle through dinitrogen extrusion from the palladium ethyl diazoacetate (Pd-EDA) complex is less favorable. The reaction instead proceeds through Ag2CO3 assisted deprotonation and subsequently reductive elimination to afford the products with diazo functionality remained. This C-H functionalization transformation can be further combined with the recently evolved palladium-catalyzed cross-coupling reaction of diazo compounds with aryl iodides to develop a tandem coupling process for the synthesis of α,α-diaryl esters. DFT calculation supports the involvement of Pd-carbene as reactive intermediate in the catalytic cycle, which goes through facile carbene migratory insertion with a low energy barrier (3.8 kcal/mol).


Asunto(s)
Compuestos Azo/química , Carbono/química , Hidrógeno/química , Paladio/química , Catálisis , Modelos Moleculares , Conformación Molecular , Teoría Cuántica , Termodinámica
16.
J Am Chem Soc ; 137(5): 2006-14, 2015 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-25588921

RESUMEN

Density functional theory (DFT) computations (BP86 and M06-L) have been utilized to elucidate the detailed mechanism of a palladium-catalyzed reaction involving pyridine-type nitrogen-donor ligands that significantly expands the scope of C(sp(3))-H activation and arylation. The reaction begins with precatalyst initiation, followed by substrate binding to the Pd(II) center through an amidate auxiliary, which directs the ensuing bicarbonate-assisted C(sp(3))-H bond activation producing five-membered-ring cyclopalladate(II) intermediates. These Pd(II) complexes further undergo oxidative addition with iodobenzene to form Pd(IV) complexes, which proceed by reductive C-C elimination/coupling to give final products of arylation. The base-assisted C(sp(3))-H bond cleavage is found to be the rate-determining step, which involves hydrogen bond interactions. The mechanism unravels the intimate involvement of the added 2-picoline ligand in every phase of the reaction, explains the isolation of the cyclopalladate intermediates, agrees with the observed kinetic hydrogen isotope effect, and demonstrates the Pd(II)/Pd(IV) redox manifold.

17.
J Org Chem ; 79(19): 9046-64, 2014 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-25222525

RESUMEN

M06-DFT computations have been applied to understand four catalytic systems which involved [Ru(Cp*)(MeCN)3]PF6 or [Ru(Tp)(PPh3)(MeCN)2]PF6 as mediator and ortho-alkenylarylacetylene, terminal alkyne, and methanol as reactants. Potentially, the products of these systems could be dihydrobiphenylenes, 1,3-dienyl ether, and naphthalene. Remarkably, each system afforded product selectively. Our computed mechanisms successfully account for the chemo- and regioselectivities of these systems. Furthermore, the study demonstrates that the chameleon-like mono(carbene) intermediates formed via the intermolecular alkyne-alkyne oxidative coupling play a crucial role to complete the reactions. According to their geometric and electronic structures, three resonance structures were introduced to characterize their reactivity properties, which address the features of the classical alkyne-alkyne oxidative coupling intermediates, mono(carbene) species, and electrophilicity of the intermediates, respectively. The reactivity properties lead to three channels isomerizing the intermediates to three isomers. Surprisingly, the bis(carbene) isomers, which are similar to the bis(carbene) intermediates generally considered to be crucial in the neutral RuCp*Cl-catalyzed systems, are accessible but not reactive enough to continue the subsequent reaction steps partially due to aromaticity. The other two isomers continue subsequent reaction steps. These findings may help not only to understand the four specific catalytic reactions but also to advance the [2 + 2 + 2] synthetic methodology.

18.
J Am Chem Soc ; 136(13): 4974-91, 2014 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-24611673

RESUMEN

Kempe et al. and Milstein et al. have recently advanced the dehydrogenative coupling methodology to synthesize pyrroles from secondary alcohols (e.g., 3) and ß-amino alcohols (e.g., 4), using PNP-Ir (1) and PNN-Ru (2) pincer complexes, respectively. We herein present a DFT study to characterize the catalytic mechanism of these reactions. After precatalyst activation to give active 1A/2A, the transformation proceeds via four stages: 1A/2A-catalyzed alcohol (3) dehydrogenation to give ketone (11), base-facilitated C-N coupling of 11 and 4 to form an imine-alcohol intermediate (18), base-promoted cyclization of 18, and catalyst regeneration via H2 release from 1R/2R. For alcohol dehydrogenations, the bifunctional double hydrogen-transfer pathway is more favorable than that via ß-hydride elimination. Generally, proton-transfer (H-transfer) shuttles facilitate various H-transfer processes in both systems. Notwithstanding, H-transfer shuttles play a much more crucial role in the PNP-Ir system than in the PNN-Ru system. Without H-transfer shuttles, the key barriers up to 45.9 kcal/mol in PNP-Ir system are too high to be accessible, while the corresponding barriers (<32.0 kcal/mol) in PNN-Ru system are not unreachable. Another significant difference between the two systems is that the addition of alcohol to 1A giving an alkoxo complex is endergonic by 8.1 kcal/mol, whereas the addition to 2A is exergonic by 8.9 kcal/mol. The thermodynamic difference could be the main reason for PNP-Ir system requiring lower catalyst loading than the PNN-Ru system. We discuss how the differences are resulted in terms of electronic and geometric structures of the catalysts and how to use the features in catalyst development.

19.
J Am Chem Soc ; 136(3): 986-98, 2014 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-24380644

RESUMEN

Density functional theory (DFT) calculations (B3LYP and M06) have been utilized to study a newly reported Heck-type reaction that uses an allylic or alkenyl alcohol as substrate and palladium as catalyst in the form of a chelate with a chiral pyridine oxazoline (PyrOx) ligand. The reaction not only controls the regio- and enantioselectivities of arylation of the C═C bond, but also forms the carbonyl functionality up to four bonds away from the aryl substituent via tandem C═C bond migration and enol-to-keto conversion. Computations performed on representative reaction systems allow us to propose a detailed mechanism with several key steps. Initial oxidation of palladium(0) by aryldiazonium generates active arylpalladium(II) species that bind the C═C bond of an allylic or alkenyl alcohol. The activated C═C bond inserts into the palladium-aryl moiety to attain aryl substitution and a chiral carbon center, and the resulting complex undergoes ß-hydride elimination to give a new C═C bond that can repeat the insertion/elimination process to move down the carbon chain to form an enol that tautomerizes to a highly stable carbonyl final product. The calculations reveal that the C═C bond migratory insertion step determines both the regioselectivity and the enantioselectivity of arylation, with the former arising mainly from the electronic effect of the hydroxyl group on the charge distribution over the C═C bond and the latter originating from a combination of steric repulsion, trans influence, and C-H/π dispersion interactions.

20.
J Am Chem Soc ; 135(36): 13502-11, 2013 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-23947689

RESUMEN

Palladium-catalyzed cross-coupling reactions between benzyl, aryl, or allyl bromides and conjugated ene-yne-ketones lead to the formation of 2-alkenyl-substituted furans. This novel coupling reaction involves oxidative addition, alkyne activation-cyclization, palladium carbene migratory insertion, ß-hydride elimination, and catalyst regeneration. Palladium (2-furyl)carbene is proposed as the key intermediate, which is supported by DFT calculations. The palladium carbene character of the key intermediate is validated by three aspects, including bond lengths, Wiberg bond order indices, and molecular orbitals, by comparison to those reported for stable palladium carbene species. Computational studies also revealed that the rate-limiting step is ene-yne-ketone cyclization, which leads to the formation of the palladium (2-furyl)carbene, while the subsequent carbene migratory insertion is a facile process with a low energy barrier (<5 kcal/mol).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA