RESUMEN
At present, groundwater nitrate pollution in China is serious. The use of microorganisms for biological denitrification has been widely applied, and it is a universal and efficient in situ groundwater remediation technique, but this approach is influenced by many factors. In this study, glucose was adopted as the carbon source, four different concentrations of 0, 2, 5 and 10â g/L were considered, and natural groundwater with a nitrate concentration of 300.8â mg/L was employed as the experimental solution. The effect of the carbon source concentration on the nitrate removal rate in groundwater was examined through heterotrophic anaerobic denitrification experiments. The results showed that the nitrate removal rate could be improved by the addition of an external carbon source in the process of biological denitrification, and an optimal concentration was observed. At a glucose concentration of 2â g/L, the denitrification effect was the best.
Asunto(s)
Agua Subterránea , Contaminantes Químicos del Agua , Carbono , Desnitrificación , Glucosa , Nitratos , Óxidos de Nitrógeno , Contaminantes Químicos del Agua/análisisRESUMEN
Groundwater is the primary source of water for domestic use and agricultural irrigation in Jiaodong Peninsula. This study collected 80 groundwater samples from Jiaodong Peninsula to characterize groundwater hydrogeochemical processes and the suitability of groundwater for domestic use and agricultural irrigation. The groundwater of Jiaodong Peninsula was categorized as slightly alkaline freshwater, with a Piper diagram classifying most samples as SO4·Cl-Ca·Mg and HCO3-Ca·Mg types. Major ions were Ca2+, Na+, SO42-, and HCO3-. The major processes driving the hydrochemistry of groundwater were identified as water-rock interactions as well as evaporation. The dissolution of silicate and cation exchange were the predominant hydrogeochemical processes responsible for groundwater chemistry. Four water samples showed seawater intrusion and some indicated pollution from anthropogenic activities such as industry, agriculture, and domestic sewage discharge. Overall, it was found that groundwater in most areas of Jiaodong Peninsula is suitable for domestic use and agricultural irrigation.