RESUMEN
Metabotropic glutamate receptor 2 (mGluR2) has been extensively studied for the treatment of various neurological and psychiatric disorders. Understanding of the mGluR2 function is pivotal in supporting the drug discovery targeting mGluR2. Herein, the positive allosteric modulation of mGluR2 was investigated via the in vivo positron emission tomography (PET) imaging using 2-((4-(2-[11C]methoxy-4-(trifluoromethyl)phenyl)piperidin-1-yl)methyl)-1-methyl-1H-imidazo[4,5-b]pyridine ([11C]mG2P001). Distinct from the orthosteric compounds, pretreatment with the unlabeled mG2P001, a potent mGluR2 positive allosteric modulator (PAM), resulted in a significant increase instead of decrease of the [11C]mG2P001 accumulation in rat brain detected by PET imaging. Subsequent in vitro studies with [3H]mG2P001 revealed the cooperative binding mechanism of mG2P001 with glutamate and its pharmacological effect that contributed to the enhanced binding of [3H]mG2P001 in transfected CHO cells expressing mGluR2. The in vivo PET imaging and quantitative analysis of [11C]mG2P001 in non-human primates (NHPs) further validated the characteristics of [11C]mG2P001 as an imaging ligand for mGluR2. Self-blocking studies in primates enhanced accumulation of [11C]mG2P001. Altogether, these studies show that [11C]mG2P001 is a sensitive biomarker for mGluR2 expression and the binding is affected by the tissue glutamate concentration.
Asunto(s)
Receptores de Glutamato Metabotrópico , Ratas , Cricetinae , Animales , Ratas Sprague-Dawley , Cricetulus , Tomografía de Emisión de PositronesRESUMEN
Fragile X syndrome (FXS) is a monogenic disorder characterized by intellectual disability and behavioral challenges. It is caused by aberrant methylation of the fragile X mental retardation 1 (FMR1) gene. Given the failure of clinical trials in FXS and growing evidence of a role of metabotropic glutamate subtype 5 receptors (mGluR5) in the pathophysiology of the disorder, we investigated mGluR5 function in FMR1 Knockout (FMR1-KO) mice and age- and sex-matched control mice using longitudinal positron emission tomography (PET) imaging to better understand the disorder. The studies were repeated at four time points to examine age- and disease-induced changes in mGluR5 availability using 3-fluoro-[18F]5-(2-pyridinylethynyl)benzonitrile ([18F]FPEB). We found that the binding potential (BP) of [18F]FPEB was significantly lower in the KO mice in mGluR5-implicated brain areas including striatum, cortex, hippocampus, thalamus, and olfactory bulb. The BP also changed with age, regardless of disorder status, increasing in early adulthood in male but not in female mice before decreasing later in both sexes. The difference in mGluR5 availability between the FMR1-KO and control mice and the change in BP in the KO mice as a function of age and sex illustrate the nature of the disorder and its progression, providing mechanistic insights for treatment design.
RESUMEN
Human transmission of SARS-CoV-2 and emergent variants of concern continue to occur globally, despite mass vaccination campaigns. Public health strategies to reduce virus spread should therefore rely, in part, on frequent screening with rapid, inexpensive, and sensitive tests. We evaluated two digitally integrated rapid tests and assessed their performance using stored nasal swab specimens collected from individuals with or without COVID-19. An isothermal amplification assay combined with a lateral flow test had a limit of detection of 10 RNA copies per reaction, and a positive percent agreement (PPA)/negative percent agreement (NPA) during the asymptomatic and symptomatic phases of 100%/100% and 95.83/100%, respectively. Comparatively, an antigen-based lateral flow test had a limit of detection of 30,000 copies and a PPA/NPA during the asymptomatic and symptomatic phases of 82.86%/98.68% and 91.67/100%, respectively. Both the isothermal amplification and antigen-based lateral flow tests had optimized detection of SARS-CoV-2 during the peak period of transmission; however, the antigen-based test had reduced sensitivity in clinical samples with qPCR Ct values greater than 29.8. Low-cost, high-throughput screening enabled by isothermal amplification or antigen-based techniques have value for outbreak control.
Asunto(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnóstico , Humanos , Pruebas Inmunológicas , Reacción en Cadena en Tiempo Real de la Polimerasa , SARS-CoV-2/genética , Sensibilidad y EspecificidadRESUMEN
PURPOSE: Metabotropic glutamate receptor 2 (mGluR2) has been implicated in various psychiatric and neurological disorders, such as schizophrenia and Alzheimer's disease. We have previously developed [11C]7 as a PET radioligand for imaging mGluR2. Herein, [18F]JNJ-46356479 ([18F]8) was synthesized and characterized as the first 18F-labeled mGluR2 imaging ligand to enhance diagnostic approaches for mGluR2-related disorders. PROCEDURES: JNJ-46356479 (8) was radiolabeled via the copper (I)-mediated radiofluorination of organoborane 9. In vivo PET imaging experiments with [18F]8 were conducted first in C57BL/6 J mice and Sprague-Dawley rats to obtain whole body biodistribution and brain uptake profile. Subsequent PET studies were done in a cynomolgus monkey (Macaca fascicularis) to investigate the uptake of [18F]8 in the brain, its metabolic stability, as well as pharmacokinetic properties. RESULTS: JNJ-46356479 (8) exhibited excellent selectivity against other mGluRs. In vivo PET imaging studies showed reversible and specific binding characteristic of [18F]8 in rodents. In the non-human primate, [18F]8 displayed good in vivo metabolic stability, excellent brain permeability, fast and reversible kinetics with moderate heterogeneity across brain regions. Pre-treatment studies with compound 7 revealed time-dependent decrease of [18F]8 accumulation in mGluR2 rich regions based on SUV values with the highest decrease in the nucleus accumbens (18.7 ± 5.9%) followed by the cerebellum (18.0 ± 7.9%), the parietal cortex (16.9 ± 7.8%), and the hippocampus (16.8 ± 6.9%), similar to results obtained in the rat studies. However, the volume of distribution (VT) results derived from 2T4k model showed enhanced VT from a blocking study with compound 7. This is probably because of the potentiating effect of compound 7 as an mGluR2 PAM as well as related non-specific binding in the tissue data. CONCLUSIONS: [18F]8 readily crosses the blood-brain barrier and demonstrates fast and reversible kinetics both in rodents and in a non-human primate. Further investigation of [18F]8 on its binding specificity would warrant translational study in human.
Asunto(s)
Encéfalo/metabolismo , Fluorodesoxiglucosa F18/química , Radiofármacos/síntesis química , Receptores de Glutamato Metabotrópico/metabolismo , Animales , Encéfalo/diagnóstico por imagen , Fluorodesoxiglucosa F18/farmacocinética , Ligandos , Macaca fascicularis , Masculino , Ratones , Ratones Endogámicos C57BL , Radiofármacos/farmacocinética , Ratas , Ratas Sprague-Dawley , Distribución TisularRESUMEN
Three benzimidazole derivatives (13-15) have been synthetized as potential positron emission tomography (PET) imaging ligands for mGluR2 in the brain. Of these compounds, 13 exhibits potent binding affinity (IC50 = 7.6 ± 0.9 nM), positive allosteric modulator (PAM) activity (EC50 = 51.2 nM), and excellent selectivity against other mGluR subtypes (>100-fold). [11C]13 was synthesized via O-[11C]methylation of its phenol precursor 25 with [11C]methyl iodide. The achieved radiochemical yield was 20 ± 2% (n = 10, decay-corrected) based on [11C]CO2 with a radiochemical purity of >98% and molar activity of 98 ± 30 GBq/µmol EOS. Ex vivo biodistribution studies revealed reversible accumulation of [11C]13 and hepatobiliary and urinary excretions. PET imaging studies in rats demonstrated that [11C]13 accumulated in the mGluR2-rich brain regions. Pre-administration of mGluR2-selective PAM, 17 reduced the brain uptake of [11C]13, indicating a selective binding. Therefore, [11C]13 is a potential PET imaging ligand for mGluR2 in different central nervous system-related conditions.
Asunto(s)
Bencimidazoles/química , Encéfalo/diagnóstico por imagen , Diseño de Fármacos , Tomografía de Emisión de Positrones , Receptores AMPA/análisis , Animales , Bencimidazoles/síntesis química , Bencimidazoles/farmacocinética , Relación Dosis-Respuesta a Droga , Células HEK293 , Humanos , Ligandos , Ratones , Ratones Noqueados , Modelos Moleculares , Estructura Molecular , Ratas , Ratas Sprague-Dawley , Receptores AMPA/deficiencia , Relación Estructura-Actividad , Distribución TisularRESUMEN
We have synthesized and characterized [18F]-N-(4-chloro-3-((fluoromethyl-d2)thio)phenyl)-picolinamide ([18F]15) as a potential ligand for the positron emission tomography (PET) imaging of mGluR4 in the brain. Radioligand [18F]15 displays central nervous system drug-like properties, including mGluR4 affinity, potent mGluR4 PAM activity, and selectivity against other mGluRs, as well as sufficient metabolic stability. Radiosynthesis was carried out in two steps. The radiochemical yield of [18F]15 was 11.6 ± 2.9% (n = 7, decay corrected) with a purity of 99% and a molar activity of 84.1 ± 11.8 GBq/µmol. Ex vivo biodistribution studies showed reversible binding of [18F]15 in all investigated tissues including the brain, liver, heart, lungs, and kidneys. PET imaging studies in male Sprague Dawley rats showed that [18F]15 accumulates in the brain regions known to express mGluR4. Pretreatment with the unlabeled mGluR4 PAM compounds 13 (methylthio analogue) and 15 showed significant dose-dependent blocking effects. These results suggest that [18F]15 is a promising radioligand for PET imaging mGluR4 in the brain.
Asunto(s)
Picolinas/farmacología , Radiofármacos/farmacología , Receptores de Glutamato Metabotrópico/análisis , Animales , Encéfalo/metabolismo , Estabilidad de Medicamentos , Radioisótopos de Flúor/química , Ligandos , Masculino , Microsomas Hepáticos/metabolismo , Picolinas/síntesis química , Picolinas/farmacocinética , Tomografía de Emisión de Positrones , Radiofármacos/síntesis química , Radiofármacos/farmacocinética , Ratas Sprague-Dawley , Receptores de Glutamato Metabotrópico/agonistas , Receptores de Glutamato Metabotrópico/metabolismoRESUMEN
The sigma-1 receptor (σ 1R) is a unique intracellular protein. σ 1R plays a major role in various pathological conditions in the central nervous system (CNS), implicated in several neuropsychiatric disorders. Imaging of σ 1R in the brain using positron emission tomography (PET) could serve as a noninvasively tool for enhancing the understanding of the disease's pathophysiology. Moreover, σ 1R PET tracers can be used for target validation and quantification in diagnosis. Herein, we describe the radiosynthesis, in vivo PET/CT imaging of novel σ 1R 11C-labeled radioligands based on 6-hydroxypyridazinone, [11C]HCC0923 and [11C]HCC0929. Two radioligands have high affinities to σ 1R, with good selectivity. In mice PET/CT imaging, both radioligands showed appropriate kinetics and distributions. Additionally, the specific interactions of two radioligands were reduced by compounds 13 and 15 (self-blocking). Of the two, [11C]HCC0929 was further investigated in positive ligands blocking studies, using classic σ 1R agonist SA 4503 and σ 1R antagonist PD 144418. Both σ 1R ligands could extensively decreased the uptake of [11C]HCC0929 in mice brain. Besides, the biodistribution of major brain regions and organs of mice were determined in vivo. These studies demonstrated that two radioligands, especially [11C]HCC0929, possessed ideal imaging properties and might be valuable tools for non-invasive quantification of σ 1R in brain.
RESUMEN
Blockade of immune-checkpoint programmed cell death protein 1 (PD-1) or programmed cell death ligand 1 can enhance effector T-cell responses. However, the lack of response in many patients to checkpoint-inhibitor therapies emphasizes the need for combination immunotherapies to pursue maximal antitumor efficacy. We have previously demonstrated that antagonism of C-X-C chemokine receptor type 4 (CXCR4) by plerixafor (AMD3100) can decrease regulatory T (Treg)-cell intratumoral infiltration. Therefore, a combination of these 2 therapies might increase antitumor effects. Here, we evaluated the antitumor efficacy of AMD3100 and anti-PD-1 (αPD-1) antibody alone or in combination in an immunocompetent syngeneic mouse model of ovarian cancer. We found that AMD3100, a highly specific CXCR4 antagonist, directly down-regulated the expression of both C-X-C motif chemokine 12 (CXCL12) and CXCR4 in vitro and in vivo in tumor cells. AMD3100 and αPD-1 significantly inhibited tumor growth and prolonged the survival of tumor-bearing mice when given as monotherapy. Combination of these 2 agents significantly enhanced antitumor effects compared with single-agent administration. Benefits of tumor control and animal survival were associated with immunomodulation mediated by these 2 agents, which were characterized by increased effector T-cell infiltration, increased effector T-cell function, and increased memory T cells in tumor microenvironment. Intratumoral Treg cells were decreased, and conversion of Treg cells into T helper cells was increased by AMD3100 treatment. Intratumoral myeloid-derived suppressor cells were decreased by the combined treatment, which was associated with decreased IL-10 and IL-6 in the ascites. Also, the combination therapy decreased suppressive leukocytes and facilitated M2-to-M1 macrophage polarization in the tumor. These results suggest that AMD3100 could be used to target the CXCR4-CXCL12 axis to inhibit tumor growth and prevent multifaceted immunosuppression alone or in combination with αPD-1 in ovarian cancer, which could be clinically relevant to patients with this disease.-Zeng, Y., Li, B., Liang, Y., Reeves, P. M., Qu, X., Ran, C., Liu, Q., Callahan, M. V., Sluder, A. E., Gelfand, J. A., Chen, H., Poznansky, M. C. Dual blockade of CXCL12-CXCR4 and PD-1-PD-L1 pathways prolongs survival of ovarian tumor-bearing mice by prevention of immunosuppression in the tumor microenvironment.
Asunto(s)
Antígeno B7-H1 , Quimiocina CXCL12 , Compuestos Heterocíclicos/farmacología , Tolerancia Inmunológica/efectos de los fármacos , Proteínas de Neoplasias , Neoplasias Ováricas , Receptor de Muerte Celular Programada 1 , Receptores CXCR4 , Transducción de Señal , Microambiente Tumoral , Animales , Antígeno B7-H1/antagonistas & inhibidores , Antígeno B7-H1/inmunología , Bencilaminas , Línea Celular Tumoral , Quimiocina CXCL12/antagonistas & inhibidores , Quimiocina CXCL12/inmunología , Ciclamas , Femenino , Ratones , Proteínas de Neoplasias/antagonistas & inhibidores , Proteínas de Neoplasias/inmunología , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/inmunología , Neoplasias Ováricas/patología , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Receptor de Muerte Celular Programada 1/inmunología , Receptores CXCR4/antagonistas & inhibidores , Receptores CXCR4/inmunología , Transducción de Señal/efectos de los fármacos , Transducción de Señal/inmunología , Microambiente Tumoral/efectos de los fármacos , Microambiente Tumoral/inmunologíaRESUMEN
Highly active anti-retroviral therapy (HAART) cannot clear infected cells harboring HIV-1 proviral DNA from HIV-1-infected patients. We previously demonstrated that zinc-finger nucleases (ZFNs) can specifically and efficiently excise HIV-1 proviral DNA from latently infected human T cells by targeting long terminal repeats (LTRs), a novel and alternative antiretroviral strategy for eradicating HIV-1 infection. To prevent unwanted off-target effects from constantly expressed ZFNs, in this study, we engineered the expression of ZFNs under the control of HIV-1 LTR, by which ZFN expression can be activated by the HIV-1 (Trans-Activator of Transcription) Tat protein. Our results show that functional expression of ZFNs induced by Tat excise the integrated proviral DNA of HIV-NL4-3-eGFP in approximately 30% of the population of HIV-1-infected cells. The results from HIV-1-infected human primary T cells and latently infected T cells treated with the inducible ZFNs further validated that proviral DNA can be excised. Taken together, positively regulated expression of ZFNs in the presence of HIV-1 Tat may provide a safer and novel implementation of genome-editing technology for eradicating HIV-1 proviral DNA from infected host cells.
RESUMEN
AMD3100 (plerixafor), a CXCR4 antagonist, has been demonstrated to suppress tumor growth and modulate intratumoral T-cell trafficking. However, the effect of AMD3100 on immunomodulation remains elusive. Here, we explored immunomodulation and antitumor efficacy of AMD3100 in combination with a previously developed mesothelin-targeted, immune-activating fusion protein, VIC-008, in two syngeneic, orthotopic models of malignant mesothelioma in immunocompetent mice. We showed that combination therapy significantly suppressed tumor growth and prolonged animal survival in two mouse models. Tumor control and survival benefit were associated with enhanced antitumor immunity. VIC-008 augmented mesothelin-specific CD8+ T-cell responses in the spleen and lymph nodes and facilitated intratumoral lymphocytic infiltration. However, VIC-008 treatment was associated with increased programmed cell death protein-1 (PD-1) expression on intratumoral CD8+ T cells, likely due to high CXCL12 in the tumor microenvironment. AMD3100 alone and in combination with VIC-008 modulated immunosuppression in tumors and the immune system through suppression of PD-1 expression on CD8+ T cells and conversion of regulatory T cells (Tregs) into CD4+CD25-Foxp3+IL2+CD40L+ helper-like cells. In mechanistic studies, we demonstrated that AMD3100-driven Treg reprogramming required T cell receptor (TCR) activation and was associated with loss of PTEN due to oxidative inactivation. The combination of VIC-008 augmentation of tumor-specific CD8+ T-cell responses with AMD3100 abrogation of immunosuppression conferred significant benefits for tumor control and animal survival. These data provide new mechanistic insight into AMD3100-mediated immunomodulation and highlight the enhanced antitumor effect of AMD3100 in combination with a tumor antigen-targeted therapy in mouse malignant mesothelioma, which could be clinically relevant to patients with this difficult-to-treat disease. Cancer Immunol Res; 6(5); 539-51. ©2018 AACR.
Asunto(s)
Antígenos Bacterianos/inmunología , Vacunas contra el Cáncer/uso terapéutico , Proteínas Ligadas a GPI/inmunología , Proteínas HSP70 de Choque Térmico/inmunología , Compuestos Heterocíclicos/farmacología , Inmunomodulación/efectos de los fármacos , Mesotelioma/terapia , Animales , Antígenos Bacterianos/genética , Antígenos Bacterianos/uso terapéutico , Bencilaminas , Células CHO , Vacunas contra el Cáncer/inmunología , Línea Celular Tumoral , Terapia Combinada , Cricetinae , Cricetulus , Ciclamas , Sinergismo Farmacológico , Femenino , Proteínas HSP70 de Choque Térmico/genética , Proteínas HSP70 de Choque Térmico/uso terapéutico , Compuestos Heterocíclicos/administración & dosificación , Mesotelina , Mesotelioma/inmunología , Mesotelioma/patología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteínas Recombinantes de Fusión/inmunología , Proteínas Recombinantes de Fusión/uso terapéuticoRESUMEN
Cigarette smoking is a well-known risk factor in the development and progression of malignant diseases. Nicotine, the major constituent in cigarette smoke, has also shown negative effects on stem cells. Mesenchymal stem cells (MSCs) have been widely demonstrated to migrate into tumors and play key roles in cancer progression. However, the mechanisms by which nicotine impacts MSCs and tumorigenesis of lung cancer are still undetermined. In this study we investigated the effects of nicotine on human umbilical cord mesenchymal stem cells (hUC-MSCs) and the impacts of nicotine-treated hUC-MSCs on tumor formation and progression. We found that nicotine has a toxic effect on hUC-MSCs and changes the morphology, inhibits proliferation and promotes apoptosis of hUC-MSCs in a dose-dependent manner. Nicotine-treated hUC-MSCs produce higher level of IL-6. Moreover, nicotine promotes migration, stemness and epithelial-mesenchymal transition (EMT) of hUC-MSCs by inhibiting E-cadherin expression and upregulating mesenchymal markers such as N-cadherin and Vimentin, leading to the induction of stem cell markers Sox2, Nanog, Sall4, Oct4 and CD44. Migration and proliferation of non-small cell lung cancer A549 cells and breast cancer MCF-7 cells are promoted after their coculture with nicotine-treated hUC-MSCs in a cell-cell contact-independent manner. Furthermore, nicotine-treated hUC-MSCs promote tumor formation and growth of A549 cells in nude mice. These studies demonstrated that the enhanced stemness and EMT of hUC-MSCs induced by nicotine are critical for the development of tobacco-related cancers.
RESUMEN
Cells harboring latent HIV-1 pose a major obstacle to eradication of the virus. The 'shock and kill' strategy has been broadly explored to purge the latent reservoir; however, none of the current latency-reversing agents (LRAs) can safely and effectively activate the latent virus in patients. In this study, we report an ingenol derivative called EK-16A, isolated from the traditional Chinese medicinal herb Euphorbia kansui, which displays great potential in reactivating latent HIV-1. A comparison of the doses used to measure the potency indicated EK-16A to be 200-fold more potent than prostratin in reactivating HIV-1 from latently infected cell lines. EK-16A also outperformed prostratin in ex vivo studies on cells from HIV-1-infected individuals, while maintaining minimal cytotoxicity effects on cell viability and T cell activation. Furthermore, EK-16A exhibited synergy with other LRAs in reactivating latent HIV-1. Mechanistic studies indicated EK-16A to be a PKCγ activator, which promoted both HIV-1 transcription initiation by NF-κB and elongation by P-TEFb signal pathways. Further investigations aimed to add this compound to the therapeutic arsenal for HIV-1 eradication are in the pipeline.
Asunto(s)
Fármacos Anti-VIH/uso terapéutico , Diterpenos/uso terapéutico , Infecciones por VIH/virología , VIH-1/fisiología , Linfocitos T/efectos de los fármacos , Linfocitos T/inmunología , Activación Viral/efectos de los fármacos , Latencia del Virus/efectos de los fármacos , Muerte Celular , Supervivencia Celular , Células Cultivadas , Diterpenos/química , Sinergismo Farmacológico , Quimioterapia Combinada , Euphorbia/virología , Humanos , FN-kappa B/metabolismo , Ésteres del Forbol/uso terapéutico , Factor B de Elongación Transcripcional Positiva/metabolismo , Proteína Quinasa C/metabolismo , Transducción de Señal , Linfocitos T/virología , Activación TranscripcionalRESUMEN
CRISPR-associated protein 9 (Cas9)-mediated genome editing provides a promising cure for HIV-1/AIDS; however, gene delivery efficiency in vivo remains an obstacle to overcome. Here, we demonstrate the feasibility and efficiency of excising the HIV-1 provirus in three different animal models using an all-in-one adeno-associated virus (AAV) vector to deliver multiplex single-guide RNAs (sgRNAs) plus Staphylococcus aureus Cas9 (saCas9). The quadruplex sgRNAs/saCas9 vector outperformed the duplex vector in excising the integrated HIV-1 genome in cultured neural stem/progenitor cells from HIV-1 Tg26 transgenic mice. Intravenously injected quadruplex sgRNAs/saCas9 AAV-DJ/8 excised HIV-1 proviral DNA and significantly reduced viral RNA expression in several organs/tissues of Tg26 mice. In EcoHIV acutely infected mice, intravenously injected quadruplex sgRNAs/saCas9 AAV-DJ/8 reduced systemic EcoHIV infection, as determined by live bioluminescence imaging. Additionally, this quadruplex vector induced efficient proviral excision, as determined by PCR genotyping in the liver, lungs, brain, and spleen. Finally, in humanized bone marrow/liver/thymus (BLT) mice with chronic HIV-1 infection, successful proviral excision was detected by PCR genotyping in the spleen, lungs, heart, colon, and brain after a single intravenous injection of quadruplex sgRNAs/saCas9 AAV-DJ/8. In conclusion, in vivo excision of HIV-1 proviral DNA by sgRNAs/saCas9 in solid tissues/organs can be achieved via AAV delivery, a significant step toward human clinical trials.
Asunto(s)
Endonucleasas/genética , Terapia Genética/métodos , Genoma Viral , Infecciones por VIH/terapia , VIH-1/genética , Provirus/genética , ARN Guía de Kinetoplastida/genética , Animales , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Secuencia de Bases , Sistemas CRISPR-Cas , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Dependovirus/genética , Dependovirus/metabolismo , Modelos Animales de Enfermedad , Endonucleasas/metabolismo , Edición Génica/métodos , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Infecciones por VIH/patología , Infecciones por VIH/virología , Duplicado del Terminal Largo de VIH , VIH-1/metabolismo , Humanos , Ratones , Ratones Transgénicos , Oligonucleótidos/genética , Oligonucleótidos/metabolismo , Provirus/metabolismo , ARN Guía de Kinetoplastida/metabolismo , Staphylococcus aureus/química , Staphylococcus aureus/enzimología , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/genética , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/metabolismo , Productos del Gen pol del Virus de la Inmunodeficiencia Humana/genética , Productos del Gen pol del Virus de la Inmunodeficiencia Humana/metabolismoRESUMEN
HIV-1 inserts its proviral DNA into the infected host cells, by which HIV proviral DNA can then be duplicated along with each cell division. Thus, provirus cannot be eradicated completely by current antiretroviral therapy. We have developed an innovative strategy to silence the HIV provirus by targeted DNA methylation on the HIV promoter region. We genetically engineered a chimeric DNA methyltransferase 1 composed of designed zinc-finger proteins to become ZF2 DNMT1. After transient transfection of the molecular clone encoding this chimeric protein into HIV-1 infected or latently infected cells, efficient suppression of HIV-1 expression by the methylation of CpG islands in 5'-LTR was observed and quantified. The effective suppression of HIV in latently infected cells by ZF2-DNMT1 is stable and can last through about 40 cell passages. Cytotoxic caused by ZF2-DNMT1 was only observed during cellular proliferation. Taken together, our results demonstrate the potential of this novel approach for anti-HIV-1 therapy.
RESUMEN
None of the currently used anti-HIV-1 agents can effectively eliminate latent HIV-1 reservoirs, which is a major hurdle to a complete cure for AIDS. We report here that a novel oral BET inhibitor OTX015, a thienotriazolodiazepine compound that has entered phase Ib clinical development for advanced hematologic malignancies, can effectively reactivate HIV-1 in different latency models with an EC50 value 1.95-4.34 times lower than JQ1, a known BET inhibitor that can reactivate HIV-1 latency. We also found that OTX015 was more potent when used in combination with prostratin. More importantly, OTX015 treatment induced HIV-1 full-length transcripts and viral outgrowth in resting CD4(+) T cells from infected individuals receiving suppressive antiretroviral therapy (ART), while exerting minimal toxicity and effects on T cell activation. Finally, biochemical analysis showed that OTX015-mediated activation of HIV-1 involved an increase in CDK9 occupancy and RNAP II C-terminal domain (CTD) phosphorylation. Our results suggest that the BET inhibitor OTX015 may be a candidate for anti-HIV-1-latency therapies.
Asunto(s)
Acetanilidas/metabolismo , Linfocitos T CD4-Positivos/virología , VIH-1/efectos de los fármacos , VIH-1/fisiología , Compuestos Heterocíclicos con 3 Anillos/metabolismo , Factor B de Elongación Transcripcional Positiva/metabolismo , Activación Viral/efectos de los fármacos , Latencia del Virus/efectos de los fármacos , Acetanilidas/toxicidad , Linfocitos T CD4-Positivos/efectos de los fármacos , Linfocitos T CD4-Positivos/inmunología , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Interacciones Farmacológicas , Compuestos Heterocíclicos con 3 Anillos/toxicidad , Humanos , Activación de Linfocitos/efectos de los fármacos , Ésteres del Forbol/metabolismoRESUMEN
HIV-1 escapes antiretroviral agents by integrating into the host DNA and forming a latent transcriptionally silent HIV-1 provirus. Transcriptional activation is prerequisite for reactivation and the eradication of latent HIV-1 proviruses. dCas9-SunTag-VP64 transcriptional system has been reported that it can robustly activate the expression of an endogenous gene using a single guide RNA (sgRNA). Here, we systematically investigated the potential of dCas9-SunTag-VP64 with the designed sgRNAs for reactivating latent HIV-1. We found dCas9-SunTag-VP64 with sgRNA 4 or sgRNA 5 targeted from -164 to -146 or -124 to -106 bp upstream of the transcription start sites of HIV-1 could induce high expression of luciferase reporter gene after screening of sgRNAs targeting different regions of the HIV-1 promoter. Further, we confirmed that dCas9-SunTag-VP64 with sgRNA 4 or sgRNA 5 can effectively reactivate latent HIV-1 transcription in several latently infected human T-cell lines. Moreover, we confirmed that the reactivation of latent HIV-1 by dCas9-SunTag-VP64 with the designed sgRNA occurred through specific binding to the HIV-1 LTR promoter without genotoxicity and global T-cell activation. Taken together, our data demonstrated dCas9-SunTag-VP64 system can effectively and specifically reactivate latent HIV-1 transcription, suggesting that this strategy could offer a novel approach to anti-HIV-1 latency.
Asunto(s)
Sistemas CRISPR-Cas , VIH-1/fisiología , Regiones Promotoras Genéticas , ARN Guía de Kinetoplastida/genética , Proteínas Recombinantes de Fusión , Activación Transcripcional , Activación Viral/genética , Secuencia de Bases , Sitios de Unión , Línea Celular , Expresión Génica , Regulación Viral de la Expresión Génica , Orden Génico , Marcación de Gen , Genes Reporteros , Vectores Genéticos/genética , Duplicado del Terminal Largo de VIH , Humanos , Unión ProteicaRESUMEN
Understanding the mechanism of HIV-1 latency is crucial to the viral reservoir eradication. Human cellular miRNAs can modulate HIV-1 expression by targeting of viral RNAs or host gene transcripts. To identify miRNAs modulating HIV-1 latency, we determined the miRNA expression profiles of HIV-1 latently infected and productively infected cells by microarray and qRT-PCR. Among the differentially expressed miRNAs, miR-196b and miR-1290 targeted the 3' untranslated region of HIV-1 and affected its expression. Ectopic expression of these two miRNAs efficiently suppressed HIV-1 production and infectivity. Specific inhibitors of these miRNAs substantially counteracted their effects on HIV-1, as measured either as viral production and infectivity in HEK-293T cells or as HIV-1 RNA expression or viral production in cells isolated from HIV-1-infected individuals. Our study emphasizes the role of cellular miRNAs in HIV-1 latency regulation, and it suggests that inhibitors of miR-196b and miR-1290 could be used to activate latent HIV-1.
Asunto(s)
Infecciones por VIH/metabolismo , VIH-1/fisiología , MicroARNs/metabolismo , Latencia del Virus , Regiones no Traducidas 3' , Infecciones por VIH/genética , Infecciones por VIH/virología , VIH-1/genética , Interacciones Huésped-Patógeno , Humanos , MicroARNs/genética , ARN Viral/genética , ARN Viral/metabolismoRESUMEN
HIV latency is the foremost barrier to clearing HIV infection from patients. Reactivation of latent HIV-1 represents a promising strategy to deplete these viral reservoirs. Here, we report a novel approach to reactivate latent HIV-1 provirus using artificially designed transcription activator-like effector (TALE) fusion proteins containing a DNA-binding domain specifically targeting the HIV-1 promoter and the herpes simplex virus-based transcriptional activator VP64 domain. We engineered four TALE genes (TALE1-4) encoding TALE proteins, each specifically targeting different 20-bp DNA sequences within the HIV-1 promoter, and we constructed four TALE-VP64 expression vectors corresponding to TALE1-4. We found that TALE1-VP64 effectively reactivated HIV-1 gene expression in latently infected C11 and A10.6 cells. We further confirmed that TALE1-VP64 reactivated latent HIV-1 via specific binding to the HIV-LTR promoter. Moreover, we also found that TALE1-VP64 did not affect cell proliferation or cell cycle distribution. Taken together, our data demonstrated that TALE1-VP64 can specifically and effectively reactivate latent HIV-1 transcription, suggesting that this strategy may provide a novel approach for anti-HIV-1 latency therapy in the future.
Asunto(s)
VIH-1/genética , Proteínas Recombinantes de Fusión/farmacología , Activación Transcripcional/efectos de los fármacos , Activación Viral/genética , Latencia del Virus/genética , Secuencia de Bases , Ciclo Celular/efectos de los fármacos , Línea Celular , Proliferación Celular/efectos de los fármacos , Proteínas de Unión al ADN/metabolismo , Proteínas Fluorescentes Verdes/biosíntesis , Proteínas Fluorescentes Verdes/genética , Infecciones por VIH/genética , Infecciones por VIH/virología , Duplicado del Terminal Largo de VIH/genética , Humanos , Leucocitos Mononucleares/virología , Datos de Secuencia Molecular , Regiones Promotoras Genéticas , Simplexvirus/genética , Replicación Viral/genéticaRESUMEN
The long-lived latently infected cells persist in spite of prolonged highly active anti-retroviral therapy and present a major barrier to a cure of human immunodeficiency virus type 1 (HIV-1) infection. Elimination of this reservoir requires reactivation of the latent virus. None of the current agents can safely and effectively reactivate latent HIV-1 reservoirs. Dilazep, a nucleoside transport inhibitor, is used to treat ischemic dysfunction. However, little is known about the effect of dilazep in inducing HIV expression in latently infected cells. Using the Jurkat T cell model of HIV-1 latency, we found that dilazep effectively reactivates latent HIV-1 gene expression in a dose manner. We observed that dilazep synergistically reactivated latent HIV-1 transcription with valproic acid. We also found that dilazep activates viral latency without inducing cell surface activation markers CD25 and CD69 activation. In summary, dilazep, alone or in combination with VPA, could be useful in future eradication strategies.
Asunto(s)
Dilazep/farmacología , Reservorios de Enfermedades/virología , VIH-1/efectos de los fármacos , Activación Viral/efectos de los fármacos , Latencia del Virus/fisiología , Sinergismo Farmacológico , Citometría de Flujo , Proteínas Fluorescentes Verdes , Humanos , Células Jurkat , Ácido Valproico/farmacologíaRESUMEN
A major reason that Acquired Immune Deficiency Syndrome (AIDS) cannot be completely cured is the human immunodeficiency virus 1 (HIV-1) provirus integrated into the human genome. Though existing therapies can inhibit replication of HIV-1, they cannot eradicate it. A molecular therapy gains popularity due to its specifically targeting to HIV-1 infected cells and effectively removing the HIV-1, regardless of viral genes being active or dormant. Now, we propose a new method which can excellently delete the HIV provirus from the infected human T cell genome. First, we designed zinc-finger nucleases (ZFNs) that target a sequence within the long terminal repeat (LTR) U3 region that is highly conserved in whole clade. Then, we screened out one pair of ZFN and named it as ZFN-U3. We discovered that ZFN-U3 can exactly target and eliminate the full-length HIV-1 proviral DNA after the infected human cell lines treated with it, and the frequency of its excision was about 30 % without cytotoxicity. These results prove that ZFN-U3 can efficiently excise integrated HIV-1 from the human genome in infected cells. This method to delete full length HIV-1 in human genome can therefore provide a novel approach to cure HIV-infected individuals in the future.