Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros




Base de datos
Asunto de la revista
Intervalo de año de publicación
1.
Ultrason Sonochem ; 109: 107014, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39111249

RESUMEN

Buckwheat sprouts are rich in pectic polysaccharides, which possess numerous health-improving benefits. However, the precise structure-activity relationship of pectic polysaccharides from Tartary buckwheat sprouts (TP) is still scant, which ultimately restricts their applications in the food industry. Hence, both ultrasound-assisted Fenton treatment (UAFT) and mild alkali treatment (MATT) were utilized for the modification of TP, and then the effects of physicochemical characteristics of original and modified TPs on their bioactivities were assessed. Our findings reveled that the UAFT treatment could precisely reduce TP's molecular weight, with the levels decreased from 8.191 × 104 Da to 0.957 × 104 Da. Meanwhile, the MATT treatment could precisely reduce TP's esterification degree, with the values decreased from 28.04 % to 4.72 %. Nevertheless, both UAFT and MATT treatments had limited effects on the backbone and branched chain of TP. Moreover, our findings unveiled that the UAFT treatment could notably promote TP's antioxidant, antiglycation, and immunostimulatory effects, while remarkedly reduce TP's anti-hyperlipidemic effect, which were probably owing to that the UAFT treatment obviously reduced TP's molecular weight. Additionally, the MATT treatment could also promote TP's immunostimulatory effect, which was probably attributed to that the MATT treatment significantly decreased TP's esterification degree. Interestingly, the MATT treatment could regulate TP's antioxidant and antiglycation effects, which was probably attributed to that the MATT treatment simultaneously reduced its esterification degree and bound phenolics. Our findings are conducive to understanding TP's structure-activity relationship, and can afford a scientific theoretical basis for the development of functional or healthy products based on TPs. Besides, the UAFT treatment can be a promising approach for the modification of TP to improve its biological functions.


Asunto(s)
Álcalis , Fagopyrum , Polisacáridos , Ondas Ultrasónicas , Fagopyrum/química , Polisacáridos/química , Polisacáridos/farmacología , Polisacáridos/aislamiento & purificación , Álcalis/química , Antioxidantes/química , Antioxidantes/farmacología , Hierro/química , Peróxido de Hidrógeno/química , Fenómenos Químicos , Animales , Peso Molecular
2.
Ultrason Sonochem ; 106: 106895, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38705082

RESUMEN

Tartary buckwheat (Fagopyrum tataricum (L.) Gaertn) leaf has abundant rhamnogalacturonan-I enriched pectic polysaccharides, which exert various health-promoting effects. Nevertheless, the potential relationship between the chemical structure and the biological function of pectic polysaccharides from Tartary buckwheat leaves (TBP) remains unclear. Therefore, to bridge the gap between the chemical structure and the biological function of TBP, the impacts of ultrasound-assisted Fenton degradation (UFD) and mild alkaline de-esterification (MAD) on structural properties and biological effects of TBP were systematically studied. Compared with the native TBP (molecular mass, 9.537 × 104 Da), the molecular masses of degraded TBPs (TBP-MMW, 4.811 × 104 Da; TBP-LMW, 2.101 × 104 Da) were significantly reduced by the UFD modification, while their primary chemical structures were overall stable. Besides, compared with the native TBP (esterification degree, 22.73 %), the esterification degrees of de-esterified TBPs (TBP-MDE, 14.27 %; TBP-LDE, 6.59 %) were notably reduced by the MAD modification, while their primary chemical structures were also overall stable. Furthermore, the results revealed that both UFD and MAD modifications could significantly improve the antioxidant, antiglycation, and immunostimulatory effects of TBP. Indeed, TBP's biological effects were negatively correlated to its molecular mass and esterification degree, while positively linked to its free uronic acids. The findings demonstrate that both UFD and MAD modifications are promising techniques for the structural modification of TBP, which can remarkedly promote its biological effects. Besides, the present results are conducive to better understanding TBP's structure-bioactivity relationship.


Asunto(s)
Fagopyrum , Pectinas , Hojas de la Planta , Ondas Ultrasónicas , Hojas de la Planta/química , Fagopyrum/química , Esterificación , Pectinas/química , Pectinas/farmacología , Hierro/química , Peróxido de Hidrógeno/química , Antioxidantes/química , Antioxidantes/farmacología , Polisacáridos/química , Polisacáridos/farmacología , Animales
3.
Food Res Int ; 187: 114395, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38763655

RESUMEN

Pectic polysaccharides are one of the most vital functional ingredients in quinoa microgreens, which exhibit numerous health-promoting benefits. Nevertheless, the detailed information about the structure-function relationships of pectic polysaccharides from quinoa microgreens (QMP) remains unknown, thereby largely restricting their applications as functional foods or fortified ingredients. Therefore, to unveil the possible structure-function relationships of QMP, the mild alkali de-esterification was utilized to modify QMP, and then the correlations of esterification degrees of native and modified QMPs to their biological functions were systematically investigated. The results showed that the modified QMPs with different esterification degrees were successfully prepared by the mild alkali treatment, and the primary chemical structure (e.g., compositional monosaccharides and glycosidic linkages) of the native QMP was overall stable after the de-esterified modification. Furthermore, the results revealed that the antioxidant capacity, antiglycation effect, prebiotic potential, and immunostimulatory activity of the native QMP were negatively correlated to its esterification degree. In addition, both native and modified QMPs exerted immunostimulatory effects through activating the TLR4/NF-κB signaling pathway. These results are conducive to unveiling the precise structure-function relationships of QMP, and can also promote its applications as functional foods or fortified ingredients.


Asunto(s)
Antioxidantes , Chenopodium quinoa , Esterificación , Chenopodium quinoa/química , Relación Estructura-Actividad , Antioxidantes/química , Antioxidantes/farmacología , Antioxidantes/análisis , Pectinas/química , Polisacáridos/química , Prebióticos , Animales , Ratones , Alimentos Funcionales , Células RAW 264.7 , FN-kappa B/metabolismo
4.
Foods ; 13(4)2024 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-38397602

RESUMEN

Tartary buckwheat green leaves are considered to be among the most important by-products in the buckwheat industry. Although Tartary buckwheat green leaves are abundant in pectic polysaccharides, their potential applications in the food industry are quite scarce. Therefore, to promote their potential applications as functional or fortified food ingredients, both deep-eutectic-solvent-assisted extraction (DESE) and high-pressure-assisted deep eutectic solvent extraction (HPDEE) were used to efficiently and selectively extract pectic polysaccharides from Tartary buckwheat green leaves (TBP). The results revealed that both the DESE and HPDEE techniques not only improved the extraction efficiency of TBP but also regulated its structural properties and beneficial effects. The primary chemical structures of TBP extracted using different methods were stable overall, mainly consisting of homogalacturonan and rhamnogalacturonan-I (RG-I) pectic regions. However, both the DESE and HPDEE methods could selectively extract RG-I-enriched TBP, and the proportion of the RG-I pectic region in TBP obviously improved. Additionally, both the DESE and HPDEE methods could improve the antioxidant and anti-glycosylation effects of TBP by increasing its proportion of free uronic acids and content of bound polyphenolics and reducing its molecular weight. Moreover, both the DESE and HPDEE methods could partially intensify the immunostimulatory effect of TBP by increasing its proportion of the RG-I pectic region. These findings suggest that DES-based extraction techniques, especially the HPDEE method, can be promising techniques for the efficient and selective extraction of RG-I-enriched TBP.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA