RESUMEN
Antigen delivery via respiratory mucosal surfaces is an interesting needle-free option for vaccination. Nonetheless, it demands for the design of especially tailored formulations. Here, lipid/poly(lactic-co-glycolic) acid (PLGA) hybrid nanoparticles (hNPs) for the combined delivery of an antigen, ovalbumin (Ova), and an adjuvant, synthetic unmethylated cytosine-phosphate-guanine oligodeoxynucleotide (CpG) motifs, is developed. A panel of Ova/CpG-loaded lipid@PLGA hNPs with tunable size and surface is attained by exploiting two lipid moieties, 1,2 distearoil-sn-glycero-3-phosphoethanolamine-poly(ethylene glycol) (DSPE-PEG) and monophosphoryl lipid A (MPLA), with or without polyethyleneimine (PEI). It is gained insights on the lipid@PLGA hNPs through a combination of techniques to analytically determine the specific moiety on the surface, the spatial distribution of the components and the internal structure of the nanoplatforms. The collected results suggest that PEI plays a role of paramount importance not only in promoting in vitro antigen escape from lysosomes and enhancing antigen cross-presentation, but also in determining the arrangement of the moieties in the final architecture of the hNPs. Though multicomponent PEI-engineered lipid@PLGA hNPs turn out as a viable strategy for delivery of antigens and adjuvant to the respiratory mucosa, tunable nanoparticle features are achievable only through the optimal selection of the components and their relative amounts.
RESUMEN
Polymeric nanoparticles (NPs), specifically those comprised of biodegradable and biocompatible polyesters, have been heralded as a game-changing drug delivery platform. In fact, poly(α-hydroxy acids) such as polylactide (PLA), poly(lactide-co-glycolide) (PLGA), and poly(ε-caprolactone) (PCL) have been heavily researched in the past three decades as the material basis of polymeric NPs for drug delivery applications. As materials, these polymers have found success in resorbable sutures, biodegradable implants, and even monolithic, biodegradable platforms for sustained release of therapeutics (e.g., proteins and small molecules) and diagnostics. Few fields have gained more attention in drug delivery through polymeric NPs than cancer therapy. However, the clinical translational of polymeric nanomedicines for treating solid tumors has not been congruent with the fervor or funding in this particular field of research. Here, we attempt to provide a comprehensive snapshot of polyester NPs in the context of chemotherapeutic delivery. This includes a preliminary exploration of the polymeric nanomedicine in the cancer research space. We examine the various processes for producing polyester NPs, including methods for surface-functionalization, and related challenges. After a detailed overview of the multiple factors involved with the delivery of NPs to solid tumors, the crosstalk between particle design and interactions with biological systems is discussed. Finally, we report state-of-the-art approaches toward effective delivery of NPs to tumors, aiming at identifying new research areas and re-evaluating the reasons why some research avenues have underdelivered. We hope our effort will contribute to a better understanding of the gap to fill and delineate the future research work needed to bring polyester-based NPs closer to clinical application. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Therapeutic Approaches and Drug Discovery > Emerging Technologies.
Asunto(s)
Nanopartículas , Neoplasias , Poliésteres , Poliésteres/química , Humanos , Neoplasias/tratamiento farmacológico , Nanopartículas/química , Animales , Antineoplásicos , Sistemas de Liberación de Medicamentos , NanomedicinaRESUMEN
The strict dependence of the biological effects of nitric oxide (NO) on its concentration and generation site requires this inorganic free radical to be delivered with precise spatiotemporal control. Light-activation by suitable NO photoprecursors represents an ideal approach. Developing strategies to activate NO release using long-wavelength excitation light in the therapeutic window (650-1300 nm) is challenging. In this contribution, we demonstrate that NO release by a blue-light activatable NO photodonor (NOPD) with self-fluorescence reporting can be triggered catalytically by the much more biocompatible red light exploiting a supramolecular photosensitization process. Different red-light absorbing photosensitizers (PSs) are co-entrapped with the NOPD within different biocompatible nanocarriers such as Pluronic® micelles, microemulsions and branched cyclodextrin polymers. The intra-carrier photosensitized NO release, involving the lowest, long-lived triplet state of the PS as the key intermediate and its quenching by the NOPD, is competitive with that by molecular oxygen. This allows NO to be released with good efficacy, even under aerobic conditions. Therefore, the adopted general strategy provides a valuable tool for generating NO from an already available NOPD, otherwise activatable with the poorly biocompatible blue light, without requiring any chemical modification and using sophisticated and expensive irradiation sources.
Asunto(s)
Materiales Biocompatibles , Luz , Óxido Nítrico , Fármacos Fotosensibilizantes , Óxido Nítrico/química , Óxido Nítrico/metabolismo , Fármacos Fotosensibilizantes/química , Fármacos Fotosensibilizantes/farmacología , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Portadores de Fármacos/química , Fluorescencia , Nanopartículas/química , Humanos , Tamaño de la PartículaRESUMEN
Nowadays, the interest in research towards the local administration of drugs via the inhalation route is growing as it enables the direct targeting of the lung tissue, at the same time reducing systemic side effects. This is of great significance in the era of nucleic acid therapeutics and personalized medicine for the local treatment of severe lung diseases. However, the success of any inhalation therapy is driven by a delicate interplay of factors, such as the physiochemical profile of the payload, formulation, inhalation device, aerodynamic properties, and interaction with the lung fluids. The development of drug delivery systems tailored to the needs of this administration route is central to its success and to revolutionize the treatment of respiratory diseases. With this review, we aim to provide an up-to-date overview of advances in the development of nanoparticulate carriers for drug delivery to the lung tissue, with special regard concerning lipid and polymer-based nanocarriers (NCs). Starting from the biological barriers that the anatomical structure of the lung imposes, and that need to be overcome, the current strategies to achieve efficient lung delivery and the best support for the success of NCs for inhalation are highlighted.
RESUMEN
Colorectal cancer (CRC) often involves wild-type p53 inactivation by MDM2 and MDM4 overexpression, promoting tumor progression and resistance to 5-fluoruracil (5-FU). Disrupting the MDM2/4 heterodimer can proficiently reactivate p53, sensitizing cancer cells to 5-FU. Herein, we developed 16 peptides based on Pep3 (1), the only known peptide acting through this mechanism. The new peptides, notably 3 and 9, showed lower IC50 values than 1. When incorporated into tumor-targeted biodegradable nanoparticles, these exhibited cytotoxicity against three different CRC cell lines. Notably, NPs/9 caused a significant increase in p53 levels associated with a strong increment of its main downstream target p21 inducing apoptosis. Also, the combined treatment of 9 with 5-FU caused the activation of nucleolar stress and a synergic apoptotic effect. Hence, the co-delivery of MDM2/4 heterodimer disruptors with 5-FU through nanoparticles might be a promising strategy to overcome drug resistance in CRC.
Asunto(s)
Antineoplásicos , Neoplasias Colorrectales , Nanopartículas , Humanos , Fluorouracilo/farmacología , Proteína p53 Supresora de Tumor/metabolismo , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Apoptosis , Péptidos/farmacología , Neoplasias Colorrectales/tratamiento farmacológico , Línea Celular Tumoral , Proteínas Proto-Oncogénicas c-mdm2/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Proteínas de Ciclo Celular/metabolismoRESUMEN
Cannabidiol (CBD) has gained significant attention as a complementary and alternative medicine due to its promising therapeutic properties. However, CBD faces obstacles when administered orally due to its poor solubility in water, leading to limited absorption into the bloodstream and low and variable bioavailability. Therefore, the development of innovative delivery approaches that can enhance CBD's bioavailability, facilitate administration, and promote patient adherence is crucial. We propose a new approach for buccal delivery of CBD based on a self-assembling nanoemulsion (NE) made of a mixture of surfactants (Tween 80 and Labrasol) and medium chain triglycerides (MCTs). The NE formulation showed properties suitable for buccal administration, including appropriate size, CBD content, and surface properties, and, if compared to a CBD-MCT solution, it exhibited better control of administered doses, faster dissolution in buccal medium, and enhanced stability. The CBD-NE effectively released its active load within 5 h, remained stable even when diluted in simulated buccal fluids, and could be easily administered through a commercially available spray, providing consistent and reproducible doses of NE with optimized properties. In vitro permeation studies demonstrated that the CBD-NE facilitated swift and consistent permeation through the buccal mucosa, resulting in a higher concentration in the acceptor compartment compared to CBD-MCT. Furthermore, the in vivo study in mice showed that a single buccal administration of CBD-NE led to a quicker onset of action than a CBD solution in MCT, while maintaining the same plasma levels over time and leading to typically higher plasma concentrations compared to those usually achieved through oral administration. In conclusion, our CBD-NE represents a promising alternative formulation strategy for buccal CBD administration, overcoming the challenges associated with conventional formulations such as variable bioavailability and low control of administered doses.
RESUMEN
The role of nitric oxide (NO) as an "unconventional" therapeutic and the strict dependence of biological effects on its concentration require the generation of NO with precise spatiotemporal control. The development of precursors and strategies to activate NO release by excitation in the so-called "therapeutic window" with highly biocompatible and tissue-penetrating red light is desirable and challenging. Herein, we demonstrate that one-photon red-light excitation of Verteporfin, a clinically approved photosensitizer (PS) for photodynamic therapy, activates NO release, in a catalytic fashion, from an otherwise blue-light activatable NO photodonor (NOPD) with an improvement of about 300 nm toward longer and more biocompatible wavelengths. Steady-state and time-resolved spectroscopic and photochemical studies combined with theoretical calculations account for an NO photorelease photosensitized by the lowest triplet state of the PS. In view of biological applications, the water-insoluble PS and NOPD have been co-entrapped within water-dispersible, biodegradable polymeric nanoparticles (NPs) of mPEG-b-PCL (about 84 nm in diameter), where the red-light activation of NO release takes place even more effectively than in an organic solvent solution and almost independently by the presence of oxygen. Moreover, the ideal spectroscopic prerequisites and the restricted environment of the NPs permit the green-fluorescent co-product formed concomitantly to NO photorelease to communicate with the PS via Förster resonance energy transfer. This leads to an enhancement of the typical red emission of the PS offering the possibility of a double color optical reporter useful for the real-time monitoring of the NO release through fluorescence techniques. The suitability of this strategy applied to the polymeric NPs as potential nanotherapeutics was evaluated through biological tests performed by using HepG2 hepatocarcinoma and A375 melanoma cancer cell lines. Fluorescence investigation in cells and cell viability experiments demonstrates the occurrence of the NO release under one-photon red-light illumination also in the biological environment. This confirms that the adopted strategy provides a valuable tool for generating NO from an already available NOPD, otherwise activatable with the poorly biocompatible blue light, without requiring any chemical modification and the use of sophisticated irradiation sources.
RESUMEN
Curcumin (CUR) is a naturally occurring pigment extensively studied due to its therapeutic activity and delivered by suitable nanocarriers to overcome poor solubility in aqueous media. The significant absorption of CUR in the visible blue region has prompted its use as a potential phototherapeutic agent in treating infectious and cancer diseases, although the mechanism underlying the phototoxic effects is still not fully understood. This contribution investigates the photobehaviour of CUR within polymeric micelles, microemulsions, and zein nanoparticles, chosen as biocompatible nanocarriers, and human serum albumin as a representative biomolecule. Spectroscopic studies indicate that in all host systems, the enolic tautomeric form of CUR is converted in a significant amount of the diketo form because of the perturbation of the intramolecular hydrogen bond. This leads to intermolecular H-abstraction from the host components by the lowest excited triplet state of CUR with the formation of the corresponding ketyl radical, detected by nanosecond laser flash photolysis. This radical is oxidized by molecular oxygen, likely generating peroxyl and hydroperoxyl radical species, unless in Zein, reasonably due to the poor availability of oxygen in the closely packed structure of this nanocarrier. In contrast, no detectable formation of singlet oxygen was revealed in all the systems. Overall these results highlight the key role of the H-abstraction process over singlet oxygen sensitization as a primary photochemical pathway strictly dictated by the specific features of the microenvironment, providing new insights into the photoreactivity of CUR in biocompatible hosts that can also be useful for a better understanding of its phototoxicity mechanism.
Asunto(s)
Curcumina , Zeína , Humanos , Curcumina/química , Fotólisis , Oxígeno Singlete , Oxígeno/químicaRESUMEN
Food supplements (FS) containing red yeast rice (RYR) are largely employed to reduce lipid levels in the blood. The main ingredient responsible for biological activity is monacolin K (MoK), a natural compound with the same chemical structure as lovastatin. Concentrated sources of substances with a nutritional or physiological effect are marketed in "dose" form as food supplements (FS). The quality profile of the "dosage form" of FS is not defined in Europe, whereas some quality criteria are provided in the United States. Here, we evaluate the quality profile of FS containing RYR marketed in Italy as tablets or capsules running two tests reported in The European Pharmacopoeia 11 Ed. and very close to those reported in the USP. The results highlighted variations in dosage form uniformity (mass and MoK content) compliant with The European Pharmacopoeia 11 Ed. specifications, whereas the time needed for disintegrating tablets was longer for 44% of the tested samples. The bioaccessibility of MoK was also investigated to obtain valuable data on the biological behaviour of the tested FS. In addition, a method for citrinin (CIT) determination was optimized and applied to real samples. None of the analyzed samples demonstrated CIT contamination (LOQ set at 6.25 ng/mL). Considering the widespread use of FS, our data suggest that greater attention should be paid by fabricants and regulatory authorities to ensure the quality profile and the safe consumption of marketed products.
RESUMEN
Colorectal cancer (CRC) is one of the leading causes of cancer-related death worldwide. Despite recent therapeutic advancements, resistance to 5-fluorouracil (5-FU) remains a major obstacle to the successful treatment of this disease. We have previously identified the ribosomal protein uL3 as a key player in the cell response to 5-FU, and loss of uL3 is associated with 5-FU chemoresistance. Natural products, like carotenoids, have shown the ability to enhance cancer cell response to drugs and may provide a safer choice to defeat chemoresistance in cancer. Transcriptome analysis of a cohort of 594 colorectal patients revealed a correlation between uL3 expression and both progression-free survival and response to treatment. RNA-Seq data from uL3-silenced CRC cells demonstrated that a low uL3 transcriptional state was associated with an increased expression of specific ATP-binding cassette (ABC) genes. Using two-dimensional (2D) and three-dimensional (3D) models of 5-FU-resistant CRC cells stably silenced for uL3, we investigated the effect of a novel therapeutic strategy by combining ß-carotene and 5-FU using nanoparticles (NPs) as a drug delivery system. Our results indicated that the combined treatment might overcome 5-FU chemoresistance, inducing cell cycle arrest in the G2/M phase and apoptosis. Furthermore, the combined treatment significantly reduced the expression levels of analyzed ABC genes. In conclusion, our findings suggest that ß-carotene combined with 5-FU may be a more effective therapeutic approach for treating CRC cells with low levels of uL3.
Asunto(s)
Neoplasias Colorrectales , beta Caroteno , Humanos , beta Caroteno/farmacología , beta Caroteno/metabolismo , beta Caroteno/uso terapéutico , Proteína p53 Supresora de Tumor/genética , Resistencia a Antineoplásicos/genética , Línea Celular Tumoral , Fluorouracilo/farmacología , Fluorouracilo/uso terapéutico , Apoptosis , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , Regulación Neoplásica de la Expresión GénicaRESUMEN
Surface functionalization of nanoparticles (NPs) with tumor-targeting peptides is an emerging approach with a huge potential to translate in the clinic and ameliorate the efficacy of nano-oncologicals. One major challenge is to find straightforward strategies for anchoring peptides on the surface of biodegradable NPs and ensuring their correct exposure and orientation to bind the target receptor. Here, we propose a non-covalent strategy to functionalize polyester aminic NPs based on the formation of either electrostatic or lipophilic interactions between NPs and the peptide modified with an anchoring moiety. We selected an iNGRt peptide containing a CendR motif (CRNGR) targeting neuropilin receptor 1 (NRP-1), which is upregulated in several cancers. iNGRt was linked with either a short poly(glutamic acid) chain (polyE) or a palmitoyl chain (Palm) and used to functionalize the surface of NPs made of a diamine poly(ε-caprolactone). iNGRt-PolyE was adsorbed on preformed cationic NPs through electrostatic interaction, whereas iNGRt-Palm was integrated into the forming NPs through interactions. In both cases, peptides were strongly associated with NPs of â¼100 nm, low polydispersity indexes, and positive zeta potential values. NPs entered MDA-MB231 breast cancer cells overexpressing NRP-1 via receptor-mediated endocytosis and showed a different cell localization depending on the mode of peptide anchoring. When loaded with the lipophilic anticancer drug docetaxel (DTX), NPs functionalized with the iNGRt-Palm variant exerted a time- and dose-dependent cytotoxicity similar to DTX in MDA-MB-231 cells but were less toxic than DTX toward control MRC-5 human fibroblasts, not expressing NRP-1. In a heterotopic mouse model of triple negative breast cancer, iNGRt-Palm NPs were tolerated better than free DTX and demonstrated superior anticancer activity and survival compared to both free DTX and NPs without peptide functionalization. We foresee that the functionalization strategy with palmitoylated peptides proposed here can be extended to other biodegradable NPs and peptide sequences designed for therapeutic or targeting purposes.
Asunto(s)
Antineoplásicos , Nanopartículas , Neoplasias de la Mama Triple Negativas , Ratones , Animales , Humanos , Docetaxel , Antineoplásicos/farmacología , Polímeros , Péptidos , Línea Celular Tumoral , Portadores de FármacosRESUMEN
The potential of intra-venous gallium nitrate (GaN) administration against Pseudomonas aeruginosa pneumonia was recently demonstrated in mice and in cystic fibrosis (CF) patients. Likewise, the added value of direct lung delivery of Ga(III) has been shown in rats. Therefore, the design of a drug delivery system specifically engineered for Ga(III) inhalation is imperative to improve its accumulation in lungs. To this purpose, Ga(III) was efficiently encapsulated into hyaluronic acid/chitosan nanoparticles (Ga_HA/CS NPs), whose features were tuned to facilitate access to the target by overcoming mucus and biofilm surrounding bacteria. Then, to improve in vivo lung deposition, Ga_HA/CS NPs were engineered into mannitol-based NEM (Ga_Man NEM). The powders showed optimal in vitro aerosol performance, and sustained release kinetics in lung lining fluids. Moreover, good tolerability and antimicrobial properties were shown in vitro. Intratracheal insufflation of Ga_Man NEM in rats resulted in a significant improvement of Ga(III) persistence in the lungs coupled to a lower Ga(III) concentration in plasma and urine, compared to GaN solution. Noteworthy, the developed formulation significantly modifies the unfavorable Ga(III) kinetic increasing the Ga(III) to the lung and preventing Ga(III) accumulation in the kidney, key responsible for adverse effects, conclusively demonstrating the benefit of Ga_Man NEM to exploit the therapeutic effect of Ga(III) via inhalation route.
Asunto(s)
Fibrosis Quística , Galio , Neumonía Bacteriana , Humanos , Masculino , Ratas , Ratones , Animales , Neumonía Bacteriana/tratamiento farmacológico , PulmónRESUMEN
The design, synthesis, photochemical properties, and biological evaluation of a novel molecular dyad with double photodynamic action and its formulation within biodegradable polymeric nanoparticles (NPs) are reported. A BODIPY-based singlet oxygen (1O2) photosensitizer (PS) and a nitric oxide (NO) photodonor (NOPD) based on an amino-nitro-benzofurazan moiety have been covalently joined in a new molecular dyad, through a flexible alkyl spacer. Excitation of the dyad with visible light in the range 400-570 nm leads to the concomitant generation of the cytotoxic 1O2 and NO with effective quantum yields, being ΦΔ = 0.49 ± 0.05 and ΦNO = 0.18 ± 0.01, respectively. Besides, the non-fluorescent NOPD unit becomes highly fluorescent after the NO release, acting as an optical reporter for the NO photogenerated. The dyad is not soluble in water medium but can be effectively entrapped in water-dispersible, biodegradable polymeric NPs made of mPEG-PCL, ca. 66 nm in diameter. The polymeric nano-environment affects in an opposite way the photochemical performances of the dyad, reducing ΦΔ to 0.16 ± 0.02 and increasing ΦNO to 0.92 ± 0.03, respectively. The NPs effectively deliver the photoactive cargo into the cytoplasm of HepG2 hepatocellular carcinoma cells. A remarkable level of cell mortality is observed for the loaded NPs at very low concentrations of the dyad (1-5 µM) and very low light doses (≤0.8 J cm-2) more likely as the result of the combined photodynamic action of 1O2 and NO.
Asunto(s)
Nanopartículas , Neoplasias , Fotoquimioterapia , Línea Celular Tumoral , Nanopartículas/química , Óxido Nítrico , Fármacos Fotosensibilizantes/química , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/uso terapéutico , Polímeros/química , AguaRESUMEN
In this contribution, we report a strategy to enhance the therapeutic action of the chemotherapeutic Sorafenib (SRB) through its combination with a multifunctional ß-cyclodextrin-based polymer able to deliver nitric oxide (NO) and emit green fluorescence upon visible light excitation (PolyCDNO). The basically water-insoluble SRB is effectively encapsulated in the polymeric host (1 mg mL-1) up to a concentration of 18 µg mL-1. The resulting host-guest supramolecular complex is able to release SRB in sink conditions and to preserve very well the photophysical and photochemical properties of the free PolyCDNO, as demonstrated by the similar values of the NO release and fluorescence emission quantum efficiencies found. The complex PolyCDNO/SRB internalizes in HEP-G2 hepatocarcinoma, MCF-7 breast cancer and ACHN kidney adenocarcinoma cells, localizing in all cases mainly at the cytoplasmic level. Biological experiments have been performed at SRB concentrations below the IC50 and with light doses producing NO at nontoxic concentrations. The results demonstrate exceptional mortality levels for PolyCDNO/SRB upon visible light irradiation in all the different cell lines tested, indicating a clear synergistic action between the chemotherapeutic drug and the NO. These findings can open up exciting avenues to potentiate the anticancer action of SRB and, in principle, to reduce its side effects through its use at low dosages when in combination with the photo-regulated release of NO.
Asunto(s)
Polímeros , beta-Ciclodextrinas , Celulosa , Ciclodextrinas , Óxido Nítrico/metabolismo , Polímeros/química , Sorafenib/farmacología , beta-Ciclodextrinas/químicaRESUMEN
The biological activity of a molecular hybrid (DXNO-GR) joining doxorubicin (DOX) and an N-nitroso moiety releasing nitric oxide (NO) under irradiation with the biocompatible green light has been investigated against DOX-sensitive (MCF7) and -resistant (MDA-MB-231) breast cancer cells in vitro. DXNO-GR shows significantly higher cellular internalization than DOX in both cell lines and, in contrast to DOX, does not experience cell efflux in MDR overexpressing MDA-MB-231 cells. The higher cellular internalization of the DXNO-GR hybrid seems to be mediated by bovine serum albumin (BSA) as a suitable carrier among serum proteins, according to the high binding constant measured for DXNO-GR, which is more than one order of magnitude larger than that reported for DOX. Despite the higher cellular accumulation, DXNO-GR is not toxic in the dark but induces remarkable cell death following photoactivation with green light. This lack of dark toxicity is strictly related to the different cellular compartmentalization of the molecular hybrid that, different from DOX, does not localize in the nucleus but is mainly confined in the Golgi apparatus and endoplasmic reticulum and therefore does not act as a DNA intercalator. The photochemical properties of the hybrid are not affected by binding to BSA as demonstrated by the direct detection of NO photorelease, suggesting that the reduction of cell viability observed under light irradiation is a combined effect of DOX phototoxicity and NO release which, ultimately, inhibits MDR1 efflux pump in DOX-resistant cells.
RESUMEN
Inhaled siRNA therapy has a unique potential for treatment of severe lung diseases, such as cystic fibrosis (CF). Nevertheless, a drug delivery system tackling lung barriers is mandatory to enhance gene silencing efficacy in the airway epithelium. We recently demonstrated that lipid-polymer hybrid nanoparticles (hNPs), comprising a poly(lactic-co-glycolic) acid (PLGA) core and a lipid shell of dipalmitoyl phosphatidylcholine (DPPC), may assist the transport of the nucleic acid cargo through mucus-covered human airway epithelium. To study in depth the potential of hNPs for siRNA delivery to the lungs and to investigate the hypothesized benefit of PEGylation, here, an siRNA pool against the nuclear factor-κB (siNFκB) was encapsulated inside hNPs, endowed with a non-PEGylated (DPPC) or a PEGylated (1,2-distearoyl-sn-glycero-3-phosphoethanolamine-poly(ethylene glycol) or DSPE-PEG) lipid shell. Resulting hNPs were tested for their stability profiles and transport properties in artificial CF mucus, mucus collected from CF cells, and sputum samples from a heterogeneous and representative set of CF patients. Initial information on hNP properties governing their interaction with airway mucus was acquired by small-angle X-ray scattering (SAXS) studies in artificial and cellular CF mucus. The diffusion profiles of hNPs through CF sputa suggested a crucial role of lung colonization of the corresponding donor patient, affecting the mucin type and content of the sample. Noteworthy, PEGylation did not boost mucus penetration in complex and sticky samples, such as CF sputa from patients with polymicrobial colonization. In parallel, in vitro cell uptake studies performed on mucus-lined Calu-3 cells grown at the air-liquid interface (ALI) confirmed the improved ability of non-PEGylated hNPs to overcome mucus and cellular lung barriers. Furthermore, effective in vitro NFκB gene silencing was achieved in LPS-stimulated 16HBE14o- cells. Overall, the results highlight the potential of non-PEGylated hNPs as carriers for pulmonary delivery of siRNA for local treatment of CF lung disease. Furthermore, this study provides a detailed understanding of how distinct models may provide different information on nanoparticle interaction with the mucus barrier.
Asunto(s)
Fibrosis Quística , Nanopartículas , Fibrosis Quística/tratamiento farmacológico , Humanos , Pulmón , Moco , Polímeros/farmacología , ARN Interferente Pequeño/farmacología , Dispersión del Ángulo Pequeño , Difracción de Rayos XRESUMEN
3D-printed hydrogels are particularly advantageous as drug-delivery platforms but their loading with water-soluble active compounds remains a challenge requiring the development of innovative inks. Here, we propose a new 3D extrusion-based approach that, by exploiting the internal gelation of the alginate, avoids the post-printing crosslinking process and allows the loading of epirubicin-HCl (EPI). The critical combinations of alginate, calcium carbonate and d-glucono-δ-lactone (GDL) combined with the scaffold production parameters (extrusion time, temperature, and curing time) were evaluated and discussed. The internal gelation in tandem with 3D extrusion allowed the preparation of alginate hydrogels with a complex shape and good handling properties. The dispersion of epirubicin-HCl in the hydrogel matrix confirmed the potential of this self-crosslinking alginate-based ink for the preparation of 3D-printed drug-delivery platforms. Drug release from 3D-printed hydrogels was monitored, and the cytotoxic activity was tested against MCF-7 cells. Finally, the change in the expression pattern of anti-apoptotic, pro-apoptotic, and autophagy protein markers was monitored by liquid-chromatography tandem-mass-spectrometry after exposure of MCF-7 to the EPI-loaded hydrogels.
Asunto(s)
Alginatos , Portadores de Fármacos , Epirrubicina , Hidrogeles , Impresión Tridimensional , Alginatos/química , Alginatos/farmacología , Reactivos de Enlaces Cruzados/química , Portadores de Fármacos/síntesis química , Portadores de Fármacos/química , Portadores de Fármacos/farmacocinética , Portadores de Fármacos/farmacología , Epirrubicina/química , Epirrubicina/farmacocinética , Epirrubicina/farmacología , Humanos , Hidrogeles/síntesis química , Hidrogeles/química , Hidrogeles/farmacología , Células MCF-7RESUMEN
Hand hygiene, social distancing, and face covering are considered the first protection against Coronavirus spreading. The high demand during the COVID-19 emergency has driven a frenetic production and marketing of hand sanitizer gels. Nevertheless, the effect of the gelling agent and its amount on the effectiveness of alcohol-based hand sanitizers (ABHSs) needs to be clarified. We presented a systematic study on the effect of the characteristics and concentration of the most employed excipients on the properties and antimicrobial activity of ABHSs. Three different gelling agents, carbopol, hydroxypropylmethylcellulose (HPMC), and hydroxyethylcellulose (HEC), at four different concentrations were used to prepare ABHSs. Viscosity, spreadability, delivery from commercial dispensers, evaporation rate, rubbing time, and hand distribution of the ABHSs were then explored. Biocidal activity of selected ABHSs was evaluated in vitro on ATCC and clinical strains. The studied ABHS can be considered bioactive and comfortable. Nevertheless, the cellulose polymers and ethanol interactions led to a slight but significant reduction in the biocidal activity compared with carbopol-based formulations. Our results underline the importance of the gelling agent properties and support the choice of carbopol as one of the best thickener agents in ABHS formulations.
RESUMEN
It has recently emerged that drugs such as the mTOR inhibitor rapamycin (Rapa) may play a key role in the treatment of airway inflammation associated with lung diseases, such as chronic obstructive pulmonary disease, asthma, and cystic fibrosis. Nevertheless, Rapa clinical application is still prevented by its unfavorable chemical-physical properties, limited oral bioavailability, and adverse effects related to non-specific biodistribution. In this paper, the design and production of a novel formulation of Rapa based on nano into micro (NiM) particles are detailed. To achieve it, Rapa-loaded nanoparticles were produced by nanoprecipitation of an amphiphilic pegylated poly-É-caprolactone/polyhydroxyethyl aspartamide graft copolymer. The obtained nanoparticles that showed a drug loading of 14.4 wt% (corresponding to an encapsulation efficiency of 82 wt%) did not interact with mucins and were able to release and protect Rapa from degradation in simulated lung and cell fluids. To allow their local administration to the lungs as a dry powder, particle engineering at micro-sized level was done by embedding nanoparticles into mannitol-based microparticles by spray drying. Obtained NiM particles had a mean diameter of about 2-µ, spherical shape and had good potential to be delivered to the lungs by a breath-activated dry powder inhalers. Rheological and turbidity experiments showed that these NiM particles can dissolve in lung simulated fluid and deliver the Rapa-loaded pegylated nanoparticles, which can diffuse through the mucus layer.