Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 16(27): 34962-34972, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38934361

RESUMEN

Formamidinium lead triiodide quantum dot (FAPbI3 QD) exhibits substantial potential in solar cells due to its suitable band gap, extended carrier lifetime, and superior phase stability. However, despite great attempts toward reconfiguring the surface chemical environment of FAPbI3 QDs, achieving the optimal efficiency of charge carrier extraction and transfer in cells remains a challenge. To circumvent this problem, we selectively introduced Au/FAPbI3 Schottky heterojunctions by reducing Au+ to Au0 and subsequently anchoring them on the surface of FAPbI3 QDs, which acts as a light-harvesting layer and establishes high-speed electron transfer channels (Au dot ↔ Au dot). As a result, the champion photoelectric conversion efficiency of solar cells reached 13.68%, a significant improvement over 11.19% of that of FAPbI3-based solar cells. The enhancement is attributed to efficient and directed electron transfer as well as a more aligned energy level arrangement. This work constructed Au/FAPbI3 QD Schottky heterojunctions, providing a viable strategy to enhance QD electron coupling for high-performance optoelectronic applications.

2.
J Colloid Interface Sci ; 661: 493-500, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38308889

RESUMEN

In this study, we prepared two-dimensional Bi4Ti3O12 nanosheets doped with rare earth ions. The experimental results show that Bi4-xTmxTi3O12 exhibits the highest reduction performance among various rare earth doped Bi4Ti3O12 materials, with a CO yield of 7.25 µmol g-1h-1. Furthermore, a delayed reaction in Bi3.97Tm0.03Ti3O12 is observed upon a cessation of light irradiation. Theoretical calculations reveal that the introduction of Tm ion not only reduces the surface energy of (001) plane and make it preferential growth in Bi4Ti3O12, but also brings the intervening energy level of Tm ion (4f and 4d mixed orbital), which is closer to the conduction band of Bi4Ti3O12 and facilitates charge carrier accumulation in trap states. The electrons retained in the shallow traps promote the hysteresis reaction following a cessation of illumination. This work provides further insights into elucidating precise reduction reaction mechanisms underlying rare earth dopant on photocatalysts. This research provides enhanced insights into unraveling the precise reduction reaction mechanisms influenced by rare earth dopants in photocatalysts.

3.
ACS Appl Mater Interfaces ; 16(5): 6189-6197, 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38266387

RESUMEN

Formamidinium lead triiodide (FAPbI3) perovskite quantum dot has outstanding durability, reasonable carrier lifetime, and long carrier diffusion length for a new generation of highly efficient solar cells. However, ligand engineering is a dilemma because of the highly ionized and dynamic characteristics of quantum dots. To circumvent this issue, herein, we employed a mild solution-phase ligand-exchange approach through adding short-chain amino acids that contain amino and carboxyl groups to modify quantum dots and passivate their surface defects during the purification process. As a result, the photoelectric conversion efficiency of FAPbI3 perovskite quantum dot solar cells (PQDSCs) increased from 11.23 to 12.97% with an open-circuit voltage of 1.09 V, a short-circuit current density of 16.37 mA cm-2, and a filling factor of 72.13%. Furthermore, the stability of the device modified by amino acids retains over 80% of the initial efficiency upon being exposed to 20-30% relative humidity for 240 h of aging treatment. This work may offer an innovative concept and approach for surface ligand treatment to improve the photovoltaic performance of PQDSCs toward large-scale manufacture.

4.
ACS Appl Mater Interfaces ; 15(43): 50148-50154, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37856670

RESUMEN

Various additives have been introduced to assist in film preparation and defect passivation. Herein, fluoroiodobenzene (FIB) molecules with different numbers of F atoms were incorporated into perovskite films to optimize the film quality as well as passivate defects. Based on the calculation and experimental results, it was found that the FIB additives were inclined to exist at the bottom of the film because of the strong affinity between F atoms stemming from FIB molecules and O atoms stemming from TiO2, especially for molecules with more F atoms. By optimization of the FIB molecule, the perovskite film crystallinity was significantly improved, the carrier lifetimes were prolonged, and the charge extraction ability was also enhanced. The device with FIB with one F atom achieved a photoelectrical conversion efficiency as high as 22.89% with a Voc of 1.118 V, fill factor (FF) of 80.44%, and Jsc of 25.45 mA cm-2, which was much higher than that of the control device with an efficiency of 20.87%. Furthermore, FIB molecules with three and five F atoms also achieved higher efficiency than that of the control device. The devices with FIB molecules showed better stability than the devices without additives. The unencapsulated devices with FIB additives held 90% of their original efficiencies in an ambient environment with a temperature of 15-25 °C and a relative humidity of 20-30%, while the control device dropped to 76% after more than 1000 h.

5.
Small ; 19(35): e2301061, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37104854

RESUMEN

The additive engineering strategy promotes the efficiency of solution-processed perovskite solar cells (PSCs) over 25%. However, compositional heterogeneity and structural disorders occur in perovskite films with the addition of specific additives, making it imperative to understand the detrimental impact of additives on film quality and device performance. In this work, the double-edged sword effects of the methylammonium chloride (MACl) additive on the properties of methylammonium lead mixed-halide perovskite (MAPbI3-x Clx ) films and PSCs are demonstrated. MAPbI3-x Clx films suffer from undesirable morphology transition during annealing, and its impacts on the film quality including morphology, optical properties, structure, and defect evolution are systematically investigated, as well as the power conversion efficiency (PCE) evolution for related PSCs. The FAX (FA = formamidinium, X = I, Br, and Ac) post-treatment strategy is developed to inhibit the morphology transition and suppress defects by compensating for the loss of the organic components, a champion PCE of 21.49% with an impressive open-circuit voltage of 1.17 V is obtained, and remains over 95% of the initial efficiency after storing over 1200 hours. This study elucidates that understanding the additive-induced detrimental effects in halide perovskites is critical to achieve the efficient and stable PSCs.

6.
J Colloid Interface Sci ; 610: 538-545, 2022 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-34838312

RESUMEN

Mimicking the natural photosynthesis process to convert carbon dioxide into value-added chemicals is vital to solving both the climate crisis worldwide and the depletion of fossil fuels. Herein, we explore the synthesis of 2D FAPbBr3 nanoplate combined with 2D Ti3C2 nanosheet to form a 2D/2D FAPbBr3/Ti3C2 Schottky heterojunction using facile hot-injection and in-situ growth approaches. The Schottky heterojunction of FAPbBr3/Ti3C2 over large interfacial contact provides abundant channels for transferring photogenerated carriers from FAPbBr3 nanoplate to Ti3C2 nanosheet. The experimental results showed a CO yield of 93.82 µmol·g-1·h-1 with ethyl acetate/deionization water as a sacrificial reagent for FAPbBr3/Ti3C2 composite, which was 1.25-fold enhancement that on pristine FAPbBr3 nanoplates. The large 2D heterointerface can efficiently accelerate the spatial separation and transfer of photogenerated carriers and result in the superior photocatalytic activity and favorable stability of FAPbBr3/Ti3C2 photocatalysts, which are proved by in-situ X-ray photoelectron spectroscopy, photoluminescence, transient absorption spectra, and Mott-Schottky measurement. Thus, this work unveils that 2D/2D Schottky heterostructures would significantly improve the reaction activities of halide perovskite-based photocatalysts.

7.
Nanoscale ; 13(14): 6692-6712, 2021 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-33885474

RESUMEN

Studies of photocatalytic conversion of CO2 into hydrocarbon fuels, as a promising solution to alleviate global warming and energy issues, are booming in recent years. Researchers have focused their interest in developing g-C3N4 composite photocatalysts with intriguing features of robust light harvesting ability, excellent catalysis, and stable performance. Four types of heterojunctions (type-II, Z-scheme, S-scheme and Schottky) of the g-C3N4 composites are widely adopted. This review aims at presenting and comparing the photocatalytic mechanisms, characteristics, and performances of g-C3N4 composites concerning these four types of heterojunctions. Besides, perspectives and undergoing efforts for further development of g-C3N4 composite photocatalysts are discussed. This review would be helpful for researchers to gain a comprehensive understanding of the progress and future development trends of g-C3N4 composite heterojunctions for photocatalytic CO2 reduction.

8.
ACS Appl Mater Interfaces ; 13(5): 6180-6187, 2021 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-33512144

RESUMEN

Metal halide perovskite with a suitable energy band structure and excellent visible-light response is a prospective photocatalyst for CO2 reduction. However, the reported inorganic halide perovskites have undesirable catalytic performances due to phase-sensitive and severe charge carrier recombination. Herein, we anchor the FAPbBr3 quantum dots (QDs) on Ti3C2 nanosheets to form a FAPbBr3/Ti3C2 composite within a Schottky heterojunction for photocatalytic CO2 reduction. Upon visible-light illumination, the FAPbBr3/Ti3C2 composite photocatalyst exhibits an appealing photocatalytic performance in the presence of deionized water. The Ti3C2 nanosheet acts as an electron acceptor to promote the rapid separation of excitons and supply specific catalytic sites. An optimal electron consumption rate of 717.18 µmol/g·h is obtained by the FAPbBr3/0.2-Ti3C2 composite, which has a 2.08-fold improvement over the pristine FAPbBr3 QDs (343.90 µmol/g·h). Meanwhile, the FAPbBr3/Ti3C2 photocatalyst also displays a superior stability during photocatalytic reaction. This work expands a new insight and platform for designing superb perovskite/MXene-based photocatalysts for CO2 reduction.

9.
ACS Appl Mater Interfaces ; 11(18): 16855-16863, 2019 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-30985112

RESUMEN

Lead-free double perovskite nanocrystals (NCs) have emerged as a new category of materials that hold the potential for overcoming the instability and toxicity issues of lead-based counterparts. Doping chemistry represents a unique avenue toward tuning and optimizing the intrinsic optical and electronic properties of semiconductor materials. In this study, we report the first example of doping Yb3+ ions into lead-free double perovskite Cs2AgBiX6 (X = Cl-, Br-) NCs via a hot injection method. The doping of Yb3+ endows the double perovskite NCs with a newly emerged near-infrared emission band (sensitized from the NC hosts) in addition to their intrinsic trap-related visible photoluminescence. By controlling the Yb-doping concentration, the dual emission profiles and photon relaxation dynamics of the double perovskite NCs can be systematically tuned. Furthermore, we have successfully inserted divalent Mn2+ ions in Cs2AgBiCl6 NCs and observed emergence of dopant emission. Our work illustrates an effective and facile route toward modifying and optimizing optical properties of double perovskite Cs2AgBiX6 (X = Cl-, Br-) NCs with an indirect bandgap nature, which can broaden a range of their potential applications in optoelectronic devices.

10.
J Colloid Interface Sci ; 532: 182-189, 2018 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-30081263

RESUMEN

Solar cells based on organometallic perovskite materials have been intensively investigated as the most promising next-generation photovoltaic technology. The quality of perovskite film and the heterojunction between perovskite and charge transporting materials dominate the performance of resulting devices. Herein, we report a facile additive-assisted method to form perovskite/2, 2', 7, 7'-tetrakis (N, N-di-p-methoxyphenylamine)-9, 90-spirobifluorene (spiro-OMeTAD) graded heterojunction by one step instead of spin-coating two layers separately. The additives concentration in anti-solution is optimized to form a mixed layer where spiro-OMeTAD is dispersive in upper perovskite films with a vertical gradient, and a capping layer with appropriate thickness. The incorporation of spiro-OMeTAD in anti-solution tremendously improve the crystallinity of perovskite films while the graded heterojunction and the derived capping layer contribute to reduced interfacial losses. Moreover, poly(methyl methacrylate) as the second additive in anti-solution further passivates defects in perovskite films. As a result, we realize perovskite solar cells with a power conversion efficiency of 15.72% based on perovskite-graded heterojunction, which is far beyond the control devices. This study demonstrates an effective extension of heterojunction engineering to fabricate efficient perovskite solar cells using simplified procedures.

11.
J Phys Chem Lett ; 9(15): 4199-4205, 2018 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-29991259

RESUMEN

Formamidinium lead halide (FAPbX3, X = Cl, Br, I) perovskite materials have recently drawn an increased amount of attention owing to their superior optoelectronic properties and enhanced material stability as compared with their methylammonium-based (MA-based) analogues. Herein, we report a study of the pressure-induced structural and optical evolutions of FAPbI3 hybrid organic-inorganic perovskite nanocrystals (NCs) using a synchrotron-based X-ray scattering technique coupled to in situ absorption and photoluminescence spectroscopies. As a result of their unique structural stability and soft nature, FAPbI3 NCs exhibit a wide range of band-gap tunability (1.44-2.17 eV) as a function of pressure (0-13.4 GPa). The study presented here not only provides an efficient and chemically orthogonal means to controllably engineer the band gap of FAPbI3 NCs using pressure but more importantly sheds light on how to strategically design the band gaps of FA-based hybrid organic-inorganic perovskites for various optoelectronic applications.

12.
Angew Chem Int Ed Engl ; 56(14): 3886-3891, 2017 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-28244628

RESUMEN

Aluminum-nitrogen six-fold octahedral coordination, [AlN6 ], is unusual and has only been seen in the high-pressure rocksalt-type aluminum nitride or some complex compounds. Herein we report novel nitrides LnAl(Si4-x Alx )N7 Oδ (Ln=La, Sm), the first inorganic compounds with [AlN6 ] coordination prepared via non-high-pressure synthesis. Structure refinements of neutron powder diffraction and single-crystal X-ray diffraction data show that these compounds crystallize in the hexagonal Swedenborgite structure type with P63 mc symmetry where Ln and Al atoms locate in anticuboctahedral and octahedral interstitials, respectively, between the triangular and Kagomé layers of [SiN4 ] tetrahedra. Solid-state NMR data of high-purity La-114 powders confirm the unusual [AlN6 ] coordination. These compounds are the first examples of the "33-114" sub-type in the "114" family. The additional site for over-stoichiometric oxygen in the structure of 114-type compounds was also identified.

13.
Sci Rep ; 6: 29476, 2016 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-27404912

RESUMEN

Two-component self-assembly supramolecular coordination complexes with particular photo-physical property, wherein unique donors are combined with a single metal acceptor, can be utilized for many applications including in photo-devices. In this communication, we described the synthesis and characterization of two-component self-assembly supramolecular coordination complexes (SCCs) bearing triazine and porphyrin faces with promising light-harvesting properties. These complexes were obtained from the self-assembly of a 90° Pt(II) acceptor with 2,4,6-tris(4-pyridyl)-1,3,5-triazine (TPyT) or 5,10,15,20-Tetra(4-pyridyl)-21H,23H-porphine (TPyP). The greatly improved conversion efficiencies of the dye-sensitized TiO2 solar cells were 6.79 and 6.08 respectively, while these SCCs were introduced into the TiO2 nanoparticle film photoanodes. In addition, the open circuit voltage (Voc) of dye-sensitized solar cells was also increased to 0.769 and 0.768 V, which could be ascribed to the inhibited interfacial charge recombination due to the addition of SCCs.

14.
Nanoscale ; 8(30): 14432-7, 2016 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-27406678

RESUMEN

Up-conversion ß-NaYF4:Yb(3+),Tm(3+)/NaYF4 core-shell nanoparticles (NYF NPs) with a high luminous intensity in the visible light region were synthesized by a hydrothermal reaction process. Photocurrent densities of the mesoscopic perovskite solar cells fabricated by incorporating up-conversion NYF NPs into the electron transporting layer are effectively enhanced. The effects of the thicknesses of the electron transporting layer and the weight ratio of up-conversion NYF NPs/TiO2 on the power conversion efficiency (PCE) of the as-fabricated devices were also investigated. The results indicate that the PCE of the optimized device achieves 16.9%, which is 20% higher than that of the device without introducing NYF NPs, and the steady-state PCE of the as-fabricated devices is close to its transient-state PCE. The up-conversion effect of NYF NPs is conducive to higher device performance rather than the nanoparticles as scattering centers to increase possible light absorption of the perovskite film or the electronic effect of the NaYF4 shell surface. These results can be further confirmed by finite-difference time-domain simulation. Photoluminescence results suggest that the multiphonon-assistance can accelerate the nonradiative recombination process at a lower temperature. Incorporating NYF NPs into the electron transporting layer opens a new approach to a promising family of electron transporting materials for mesoscopic perovskite solar cells.

15.
ACS Nano ; 10(3): 3630-6, 2016 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-26958704

RESUMEN

A solution-derived NiOx film was employed as the hole contact of a flexible organic-inorganic hybrid perovskite solar cell. The NiOx film, which was spin coated from presynthesized NiOx nanoparticles solution, can extract holes and block electrons efficiently, without any other post-treatments. An optimal power conversion efficiency (PCE) of 16.47% was demonstrated in the NiOx-based perovskite solar cell on an ITO-glass substrate, which is much higher than that of the perovskite solar cells using high temperature-derived NiOx film contacts. The low-temperature deposition process made the NiOx films suitable for flexible devices. NiOx-based flexible perovskite solar cells were fabricated on ITO-PEN substrates, and a preliminary PCE of 13.43% was achieved.

16.
Inorg Chem ; 53(4): 2195-9, 2014 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-24472012

RESUMEN

In this Study, Mg(2+) and Ba(2+) act to enhance the maximum emission of Sr2.97SiO5:0.03Eu(2+) significantly and redshift the emission band to the orange-red region in Sr(2.97-x-y)Mg(x)Ba(y)SiO5:0.03Eu(2+). Size mismatch between the host and the doped cations tunes the photoluminescence spectra shift systematically. A slight blue shift when increasing the amount of Mg(2+) occurs in the Sr(2.97-x)Eu0.03Mg(x)SiO5 lattices, and a rapid red shift occurs when Ba(2+) is codoped in the Sr(2.57-y)Eu0.03Mg0.4Ba(y)SiO5 lattices. The emission spectra were tuned from 585 to 601 nm by changing the concentration of Ba(2+). Accordingly, we propose the underlying mechanisms of the changes in the photoluminescence properties by adjusting the cation composition of phosphors. The influence of the size mismatch on the thermal quenching is also observed. This mechanism could be widely applied to oxide materials and could be useful in tuning the photoluminescence properties, which are sensitive to local coordination environment. The emission bands of Sr(2.97-x-y)Eu0.03Mg(x)Ba(y)SiO5 show the blue shift with increasing temperature, which could be described in terms of back tunneling of the excited electrons from the low-energy excited state to the high-energy excited state. Thus, the Sr(2.97-x-y)Eu0.03Mg(x)Ba(y)SiO5 phosphors could have potential applications in the daylight LEDs or warm white LEDs.

17.
Dalton Trans ; 43(6): 2418-23, 2014 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-24306491

RESUMEN

A rare-earth free red emitting ß-Zn3B2O6:Mn(2+) phosphor was prepared by a solid-state reaction method. The crystal structure, photoluminescent and cathodoluminescent properties of ß-Zn3B2O6:Mn(2+) were systematically investigated. The absorption and photoluminescence excitation spectra confirm that ß-Zn3B2O6:Mn(2+) matches the UV LED chip. Under UV light and low-voltage electron beam excitations, an interesting orange-red emission band centered at ∼600 nm of Mn(2+) at the tetrahedral Zn(2+) sites is observed. Besides, the unusual red shift with increasing Mn(2+) content is also found and contributed to an exchange interaction between Mn(2+). In addition, under low-voltage excitation, ß-Zn3B2O6:Mn(2+) exhibits higher color purity of 98.1% than that of the commercial ZnS:Ag,Cd yellow phosphor and reported ZnGeN2:Mn(2+) orange phosphor, which indicated the ß-Zn3B2O6:Mn(2+) has a patenting application in FEDs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA