Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
J Mol Model ; 30(6): 163, 2024 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-38730058

RESUMEN

CONTEXT: Xanthates are organic compounds of great interest in coordination chemistry due to their different basic sites, which allow them to form complexes with different coordination modes and geometries. These compounds are relevant in the environment and act as heavy metal collectors in aqueous environments. In this theoretical-experimental work, electronic spectroscopy studies of n-propyl xanthate complexes with group 12 metals were performed. This study verified structural differences in these systems, depending on the environment in which they are inserted. In addition, structural differences were observed when the solid was changed to an n-hexane solution. Thus, it was observed that the complexes assume a mononuclear structure in solution, while they present a polymeric form in the solid phase. The electronic spectra obtained through TD-DFT calculations were compared to those of the previously synthesized complexes. In the final theoretical analysis, the main orbitals involved in these transitions were assigned using population analysis calculations. The synthesis of the complexes was confirmed through infrared (MID and FAR), UV‒Vis, Raman, and NMR-1H spectroscopic analyses. METHODS: The structures of the mononuclear and polymeric complexes were optimized in vacuum and n-hexane. Under vacuum, DFT levels M06L/6-311 + + G** + LANL2TZ and M06L/def2-TZVP were used for the mononuclear complexes, and M06L/LANL2DZ + LANL2 were used for the polymer complexes. For the calculations of the mononuclear complexes in n-hexane, the same level of theory was used for the solid state. TD-DFT calculations for 300 excited states were performed with the same levels of theory and used the optimized structures of the complexes. Furthermore, population analysis was carried out on all the systems studied. Gaussian 09 software was used for the structure optimization, TD-DFT, and population analysis calculations. GaussSum software was used to evaluate the molecular orbitals and electronic spectra.

2.
J Mol Model ; 29(7): 203, 2023 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-37280464

RESUMEN

CONTEXT: Xanthates are organic compounds that present great interest for coordination chemistry, because they can bond in different ways to the metal ion. Thus, these compounds have several applications, being best known for their environmental application. In fact, xanthates are recognized for their application as heavy metal collector agents in aqueous environments. In view of this application, this study is aimed at showing the thermochemical and electronic parameters obtained for the reactions of substitution water molecules in the aqua zinc complexes, by xanthate ligands (n-propyl, n-butyl, and n-pentyl xanthates). In addition to their environmental application, xanthates have shown biological properties, such as anti-bacterial and anti-cancer. In recent years, xanthates have also been used in the technological area, where it participates as a precursor of sulfides for the manufacture of thin films. Our results showed complexes with distorted octahedral geometries and with negative values of enthalpy and Gibbs free energy, indicating exothermic and spontaneous processes. For all the complexes, it was observed that Zn2+ complexes have both an ionic and covalent character. However, the monosubstituted complexes showed a predominance of the ionic character. In addition, high donor-acceptor interaction energies were obtained, indicating a good superposition between the s and p orbitals involved in the Zn-S bond. METHODS: This work consists in theoretical studies of Zn2+ complexes with alkyl xanthate ligands, with different structures, where optimization and normal modes calculations were performed at different DFT levels: M06L, M06-2X, wB97XD, and B3LYP/6-311++G**+LANL2TZ, with Gaussian09 program. The process of substitution of two aqua by two xanthate ligands was analyzed in stages, forming cationic and neutral complexes, in the first and second stages, respectively. In addition, electronic energy decomposition (EDA) and natural bond orbital (NBO) analysis were performed at level M06L/6-311++G**+LANL2TZ with Gamess program.

3.
Dalton Trans ; 49(45): 16425-16439, 2020 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-32692333

RESUMEN

Four cobalt(iii)-phenylalanine complexes, [Co(Phe)(py2en)](ClO4)2·H2O (1), [Co(Phe)(TPA)](ClO4)2·H2O (2), [Co(Phe)(py2enMe2)](ClO4)2·H2O (3) and [Co(bipy)2(Phe)](ClO4)2·H2O (4), were investigated as prototype models for hypoxia-activated delivery of melphalan - a phenylalanine derivative anticancer drug of the class of nitrogen mustards. Single crystal X-ray diffraction analysis provided the molecular structures of 1-4, as a single isomer/conformer. According with NMR and theoretical calculations, the solid-state structures of 2 and 4 are maintained in solutions. For complexes 1 and 3, though, a mixture of isomers was found in DMSO solutions: Λ-cisα(exo,exo) and Δ-cisß1(exo,exo) for 1 (3 : 2 ratio), and Λ-cisα(exo,exo) and Δ-cisα(exo,exo) for 3 (5 : 1 ratio). Theoretical calculations point to a re-equilibration reaction of the solid-state Λ-cisß1 isomer of 1 in solution. Electrochemical analysis revealed a correlation between the electron-donor capacity of the ancillary ligands and the redox potentials of the complexes. The potentials varied from +0.01 for 1 to +0.31 V vs. SHE for 4 in aqueous media and indicate that reduction should be achieved in biological media. The integrity of the complexes in pH 5.5 and 7.4 buffered solutions was confirmed by UV-Vis monitoring up to 24 h at 25 °C. Reduction by ascorbic acid (AA) shows an O2-dependent dissociation of the l-Phe for complexes 1-3, with higher conversion rates at pH 7.4. For complex 4, a fast dissociation of l-Phe was observed, with conversion rates unaffected by the pH and presence of O2.


Asunto(s)
Hipoxia de la Célula , Cobalto/química , Complejos de Coordinación/química , Portadores de Fármacos/química , Fenilalanina/química , Electroquímica , Isomerismo , Oxidación-Reducción
4.
Dalton Trans ; 48(23): 8449-8463, 2019 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-31116201

RESUMEN

New complexes [Mo(η3-C3H5)X(CO)2(4-Y-BIAN)] (4-Y-BIAN = bis(4-Y-phenyl)-acenaphthenequinonediimine), with X = Br and Y = H, Me, OMe, COOH and X = Cl, Y = OMe, as well as the cation with X = NCMe and Y = OMe were synthesized, expanding the scope of this family. Two single crystal X-ray structures (X = Br, Y = Me, OMe) display a less symmetric arrangement (axial isomer), where one N donor atom is trans to the allyl group and the second to one CO. DFT studies showed similar energies for the two possible isomers of the complexes, with a very small preference for the observed axial isomer. The HOMO of the complexes is localized in the metal and the HOMO-1 of the oxidized species has a contribution from the BIAN ligand, while the LUMO is fully localized in BIAN. Electrochemical studies showed one process corresponding to the oxidation of Mo(ii) to Mo(iii) for complexes with X = Br, Y = H, Me, and two oxidation reactions for those with X = Br, Y = Cl, OMe, while the COOH derivative exhibited no oxidation wave. The antitumor effect of the complexes with X = Br was tested in cancer lines, and the H and OMe complexes were particularly active, with EC50 values below 8 µM in HeLa cell lines. The DNA binding constants determined by titration experiments were comparable with those of doxorubicin and ethidium bromide, suggesting a mechanism of action based on intercalation in DNA.

5.
Biochemistry ; 51(8): 1752-61, 2012 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-22303928

RESUMEN

This paper describes for the first time the intimate molecular details of the association between a platinated oligonucleotide and a zinc finger peptide. Site-specific platination of the guanine in a single-stranded hexanucleotide gave {[Pt(dien)d(5'-TACGCC-3')], Pt(dien)(6-mer)} (II) characterized by mass spectrometry and (1)H nuclear magnetic resonance (NMR) spectroscopy. The work extends the study of platinum-nucleobase complex-zinc finger interactions using small molecules such as [Pt(dien)(9-EtGua)](2+) (I). The structure of the (34-52) C-terminal finger of HIV nucleocapsid protein HIVNCp7 (ZF1) was characterized by (1)H NMR spectroscopy and compared with that of the N-terminal single finger and the two-finger "intact" NCp7. Interaction of II with ZF1 results in significant changes in comparison to the "free" uncomplexed hexanucleotide; the major changes occurring for Trp37 resonances that are broadened and moved upfield, and other major shifts are for Gln45 (Hε21, Hγ3, Qß), Met46 (NH, Hγ2), Lys47 (NH, Qγ), and Glu50 (Hγ2, Hγ3). The Zn-Cys/His chemical shifts show only marginal deviations. The solution structures of ZF1 and the 6-mer-ZF1 and II-ZF1 adducts were calculated from the nuclear Overhauser effect spectroscopy-derived distance constraints. The DNA position in the II-ZF1 adduct is completely different than in the absence of platinum. Major differences are the appearance of new Met46-Cyt6 H5 and Trp37-Cyt5 H5 contacts but severe weakening of the Trp37-Gua4 contact, attributed to the steric effects caused by Gua4 platination, accompanied by a change in the position of the aromatic ring. The results demonstrate the feasibility of targeting specific ZF motifs with DNA-tethered coordination compounds, such as Pt compounds and Co macrocycles, with implications for drug targetting and indeed the intimate mechanisms of DNA repair of platinated DNA.


Asunto(s)
Complejos de Coordinación/química , ADN/química , Oligonucleótidos/química , Platino (Metal)/química , Dedos de Zinc , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/química , Sitios de Unión , Espectroscopía de Resonancia Magnética , Modelos Moleculares , Simulación de Dinámica Molecular , Conformación Proteica
6.
J Biol Inorg Chem ; 17(2): 239-45, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21938443

RESUMEN

When antitumor platinum drugs react with DNA they form various types of intrastrand and interstrand cross-links (CLs). One class of new antitumor platinum compounds comprises bifunctional Pt(II) compounds based on the dinuclear or trinuclear geometry of leaving ligands. It has been shown that the DNA-binding modes of dinuclear or trinuclear bifunctional Pt(II) agents are distinct from those of mononuclear cisplatin, forming markedly more intramolecular interstrand CLs. However, at least two types of DNA interstrand cross-linking by bifunctional Pt(II) complexes can be envisaged, depending on whether the platinum complex coordinates to the bases in one DNA molecule (intramolecular interstrand CLs) or in two different DNA duplexes (interduplex CLs). We hypothesized that at least some antitumor bifunctional poly(di/tri)nuclear complexes could fulfill the requirements placed on interduplex DNA cross-linkers. To test this hypothesis we studied the interduplex cross-linking capability of a representative of antitumor polynuclear agents, namely, dinuclear Pt(II) complex [{trans-PtCl(NH(3))(2)}(2)-µ-{trans-(H(2)N(CH(2))(6)NH(2)(CH(2))(2)NH(2)(CH(2))(6)NH(2))}](4+) (BBR3535). The investigations were conducted under molecular crowding conditions mimicking environmental conditions in the cellular nucleus, namely, in medium containing ethanol, which is a commonly used crowding agent. We found with the aid of native agarose gel electrophoresis that the DNA interduplex cross-linking efficiency of BBR3535 under molecular crowding conditions was remarkable: the frequency of these CLs was 54%. In contrast, the interduplex cross-linking efficiency of mononuclear cisplatin or transplatin was markedly lower (approximately 40-fold or 18-fold, respectively). We suggest that the production of interduplex CLs in addition to other DNA intramolecular adducts may provide polynuclear Pt(II) compounds with a wider spectrum of cytotoxicity.


Asunto(s)
Antineoplásicos/química , Antineoplásicos/farmacología , ADN/metabolismo , Sustancias Intercalantes/química , Sustancias Intercalantes/farmacología , Compuestos Organoplatinos/química , Compuestos Organoplatinos/farmacología , Reactivos de Enlaces Cruzados/química , Reactivos de Enlaces Cruzados/farmacología , ADN/química , Aductos de ADN/química , Aductos de ADN/metabolismo , Humanos , Neoplasias/tratamiento farmacológico
7.
Dalton Trans ; 40(41): 10983-8, 2011 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-21918760

RESUMEN

Transplatinum planaramine (TPA) compounds possessing carboxylate ligands in the trans position have been shown to be potential antitumor drugs in a variety of cell types, including cisplatin and oxaliplatin-resistant cell lines. In this work, we ask whether the nature and stability of the carboxylate ligand can be tuned in an attempt to manipulate the extent of serum protein binding; and consequently influence cytotoxicity, cellular drug accumulation and DNA adduct formation. Monitoring the interactions of selected TPAs with N-acetyl-methionine (NAM) by (1)H and (195)Pt NMR spectroscopy shows significant differences in the rate of sulfur binding. TPA-containing acetate ligands show a much lower sulfur binding rate than those possessing formate leaving groups. The same trend was seen when acetate and formate TPA compounds were incubated with human serum albumin and the reaction monitored for 24 h. To understand whether these results could be translated into a cellular medium, MTT cytotoxicity assays were conducted for each compound, before and after incubation with whole serum. Both the formate and acetate compounds, t-[Pt(4-pic)NH(3)(OFm)(2)] and t-[Pt(4-pic)NH(3)(OAc)(2)], showed minimal losses in cytotoxic efficacy and outperformed cisplatin after pre-incubation with serum. The same trends were seen when monitoring the effects of protein binding on cellular uptake and DNA platination. The rate of protein binding/drug deactivation was shown to be directly related to the stability of the leaving group (OAc(-) > OFm(-) > Cl(-)). Thus, our results suggest that utilization of the 'carboxylate strategy' substantially enhances the cellular efficacy of TPA compounds over cisplatin by allowing for an optimal balance between cytotoxic and metabolic efficiency.


Asunto(s)
Aminas/química , Antineoplásicos/química , Ácidos Carboxílicos/química , Complejos de Coordinación/química , Platino (Metal)/química , Antineoplásicos/toxicidad , Línea Celular Tumoral , Cisplatino/química , Cisplatino/toxicidad , Complejos de Coordinación/toxicidad , ADN/química , ADN/metabolismo , Humanos , Isomerismo , Ligandos , Compuestos Organoplatinos/química , Compuestos Organoplatinos/toxicidad , Oxaliplatino , Unión Proteica , Albúmina Sérica/química , Albúmina Sérica/metabolismo
8.
Metallomics ; 3(2): 121-39, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21253649

RESUMEN

Zinc finger reactions with inorganic ions and coordination compounds are as diverse as the zinc fingers themselves. Use of metal ions such as Co(2+) and Cd(2+) has given structural, thermodynamic and kinetic information on zinc fingers and zinc-finger-DNA/RNA interactions. It is a general truism that alteration of the coordination sphere in the finger environment will disrupt the recognition with DNA/RNA and this has implications for mechanism of toxicity and carcinogenesis of metal ions. Structural zinc fingers are susceptible to electrophilic attack and the recognition that the coordination sphere of inorganic compounds may be modulated for control of electrophilic attack on zinc fingers raises the possibility of systematic studies of zinc fingers as drug targets using inorganic chemistry. Some inorganic compounds such as those of As(III) and Au(I) may exert their biological effects through inactivation of zinc fingers and novel approaches to specifically attack the zinc-bound ligands using Co(III)-Schiff bases and Platinum(II)-Nucleobase compounds have been proposed. The genomic importance of zinc fingers suggests that the "coordination chemistry" of zinc fingers themselves is ripe for exploration to design new targets for medicinal inorganic chemistry.


Asunto(s)
Metaloproteínas/química , Metales/química , Dedos de Zinc , Zinc/química , Humanos , Intercambio Iónico , Modelos Moleculares
9.
Dalton Trans ; (34): 4104-13, 2006 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-16924288

RESUMEN

The complexation properties of the ligand bis(3,5-dimethylpyrazol-1-yl)methane (L) towards group 11 metals have been studied. The reaction in a 1 : 1 molar ratio with [Cu(NCMe)4]PF6 or Ag(OTf) complexes gives the mononuclear [CuL(NCMe)]PF6 (1), with crystallographic mirror symmetry, or dinuclear [Ag2(mu-L)2](OTf)2 (2) (OTf = trifluoromethanesulfonate) in which the ligand bridges both silver centres, an unprecedented mode of coordination for this type of ligands. Compound 2 crystallizes with two water molecules and forms a supramolecular structure through classical hydrogen bonding. The reaction in a 2 : 1 ratio affords in both cases the four-coordinated derivatives [ML2]X (M = Cu, X = PF6 (3); Ag, X = OTf 4). The treatment of [Ag(OTf)(PPh3)] with the ligand L gives [AgL(PPh3)]OTf (5). The gold(I) derivative [Au2(C6F5)2(mu-L)] (6) has also been obtained by reaction of L with two equivalents of [Au(C6F5)(tht)]. These complexes present a luminescent behaviour at low temperature; the emissions being mainly intraligand but enhanced after coordination of the metal. Compounds 1-4 have been characterized by X-ray crystallography. DFT studies showed that, in the silver complex 2, coordination of H2O to Ag in the binuclear complex is favoured by formation of a hydrogen-bonding network, involving the triflato anion, and releasing enough energy to allow distortion of the Ag2 framework.

10.
Inorg Chem ; 44(15): 5247-53, 2005 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-16022522

RESUMEN

This paper reports on the chemistry of platinum complexes containing bidentate pyridine-carboxylate (pyAc = pyridin-2-yl-acetate and picEt = pyridine-2-ethylcarboxylate, ethylpicolinate) (N,O) ligands. The pyridine-2-acetate and ethylpicolinate ligands form six- and five-membered chelates, respectively, upon formation of the Pt-carboxylate bond. In all reactions with picEt with various platinum complex starting materials, spontaneous de-esterification of the pendant carboxylate ester occurs to give directly the chelates K[PtCl(2)(pic-N,O)]-trans-[Pt(pic-N,O)(2)] and SP-4,2-[PtCl(pic-N,O)(NH(3))] without any evidence of intermediates. The de-esterification is solvent dependent, and molecular modeling was used to explain this reaction. The reactions of the geometric isomers of [PtCl(pyAc-N,O)(NH(3))] with 5'-guanosine monophosphate, 5'-GMP, and N-acetyl-l-methionine, AcMet, were investigated by NMR spectroscopy. The objective was to ascertain by model chemistry the feasibility of formation of ternary DNA-Pt-protein adducts in biology. Model nucleotide and peptide compounds were formed in situ by chloride displacement giving [PtL(pyAc-N,O)(NH(3))](+) (L = 5'-GMP or AcMet). Competitive reactions were then examined by addition of the complementary ligand L. Sulfur displacement of coordinated 5'-GMP was slow. For SP-4,3-[Pt(AcMet)(NH(3))(PyAc-N,O)](+), a rapid displacement of the sulfur ligand by 5'-GMP was observed, giving SP-4,2-[Pt(5'-GMP-N7)(pyAc-N,O)(NH(3))](+).


Asunto(s)
Quelantes/síntesis química , ADN/química , Modelos Químicos , Compuestos Organometálicos/síntesis química , Platino (Metal)/química , Proteínas/química , Ácidos Carboxílicos/química , Quelantes/química , Cristalografía por Rayos X , ADN/síntesis química , Estudios de Factibilidad , Ligandos , Modelos Moleculares , Estructura Molecular , Compuestos Organometálicos/química , Proteínas/síntesis química , Piridinas/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA