RESUMEN
In the eukaryotic cell nucleus, in addition to the genomic information, chromatin organization provides an additional set of information which is more versatile and associates with distinct cell identities. In particular, the marking of the nucleosomes by a choice of specific histone variants can potentially confer distinct functional properties critical for genome function and stability. To understand how this unique marking operates we need to access to the genomic distribution of each variant. A general approach based on ChIP-Seq, relies on the specific isolation of DNA bound to the variant of interest, usually using cross-linked material and specific antibodies. The availability of reliable specific antibodies recognizing with high affinity crosslinked antigen represents a limitation. Here, we describe an experimental approach exploiting a tag fused to the protein of interest. The chose protein is a histone variant and we use native conditions for the selective capture of the histone variant in a nucleosome. Most importantly, we describe how to use a particular labeling system, with a SNAP tag enabling to specifically capture nucleosomes comprising newly synthesized histones. This method allows to follow the newly deposited histone variant at various times thereby offering a unique opportunity to evaluate the dynamics of histone deposition genome wide. We describe the method here for H3 variant, but it can be adapted to any histone variant with the appropriate fused tag to address genome wide a turn-over associated to the biological context of interest.
Asunto(s)
Histonas , Nucleosomas , Histonas/genética , Histonas/metabolismo , Nucleosomas/genética , ADN/genética , Genoma , Genómica , Cromatina/genéticaRESUMEN
Genome and epigenome integrity in eukaryotes depends on the proper coupling of histone deposition with DNA synthesis. This process relies on the evolutionary conserved histone chaperone CAF-1 for which the links between structure and functions are still a puzzle. While studies of the Saccharomyces cerevisiae CAF-1 complex enabled to propose a model for the histone deposition mechanism, we still lack a framework to demonstrate its generality and in particular, how its interaction with the polymerase accessory factor PCNA is operating. Here, we reconstituted a complete SpCAF-1 from fission yeast. We characterized its dynamic structure using NMR, SAXS and molecular modeling together with in vitro and in vivo functional studies on rationally designed interaction mutants. Importantly, we identify the unfolded nature of the acidic domain which folds up when binding to histones. We also show how the long KER helix mediates DNA binding and stimulates SpCAF-1 association with PCNA. Our study highlights how the organization of CAF-1 comprising both disordered regions and folded modules enables the dynamics of multiple interactions to promote synthesis-coupled histone deposition essential for its DNA replication, heterochromatin maintenance, and genome stability functions.
Asunto(s)
Histonas , Schizosaccharomyces , Histonas/metabolismo , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Antígeno Nuclear de Célula en Proliferación/genética , Antígeno Nuclear de Célula en Proliferación/metabolismo , Dispersión del Ángulo Pequeño , Difracción de Rayos X , Saccharomyces cerevisiae/genética , ADN/metabolismo , Nucleosomas/metabolismoRESUMEN
In mammals, CENP-A, a histone H3 variant found in the centromeric chromatin, is critical for faithful chromosome segregation and genome integrity maintenance through cell divisions. Specifically, it has dual functions, enabling to define epigenetically the centromere position and providing the foundation for building up the kinetochore. Regulation of its dynamics of synthesis and deposition ensures to propagate proper centromeres on each chromosome across mitosis and meiosis. However, CENP-A overexpression is a feature identified in many cancers. Importantly, high levels of CENP-A lead to its mislocalization outside the centromere. Recent studies in mammals have begun to uncover how CENP-A overexpression can affect genome integrity, reprogram cell fate and impact 3D nuclear organization in cancer. Here, we summarize the mechanisms that orchestrate CENP-A regulation. Then we review how, beyond its centromeric function, CENP-A overexpression is linked to cancer state in mammalian cells, with a focus on the perturbations that ensue at the level of chromatin organization. Finally, we review the clinical interest for CENP-A in cancer treatment.
RESUMEN
Tumor-infiltrating CD8 + T cells progressively lose functionality and fail to reject tumors. The underlying mechanism and re-programing induced by checkpoint blockers are incompletely understood. We show here that genetic ablation or pharmacological inhibition of histone lysine methyltransferase Suv39h1 delays tumor growth and potentiates tumor rejection by anti-PD-1. In the absence of Suv39h1, anti-PD-1 induces alternative activation pathways allowing survival and differentiation of IFNγ and Granzyme B producing effector cells that express negative checkpoint molecules, but do not reach final exhaustion. Their transcriptional program correlates with that of melanoma patients responding to immune-checkpoint blockade and identifies the emergence of cytolytic-effector tumor-infiltrating lymphocytes as a biomarker of clinical response. Anti-PD-1 favors chromatin opening in loci linked to T-cell activation, memory and pluripotency, but in the absence of Suv39h1, cells acquire accessibility in cytolytic effector loci. Overall, Suv39h1 inhibition enhances anti-tumor immune responses, alone or combined with anti-PD-1, suggesting that Suv39h1 is an "epigenetic checkpoint" for tumor immunity.
Asunto(s)
Linfocitos T CD8-positivos , Melanoma , Metiltransferasas , Receptor de Muerte Celular Programada 1 , Proteínas Represoras , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo , Epigénesis Genética , Humanos , Activación de Linfocitos , Linfocitos Infiltrantes de Tumor/inmunología , Linfocitos Infiltrantes de Tumor/metabolismo , Melanoma/genética , Melanoma/inmunología , Melanoma/terapia , Metiltransferasas/antagonistas & inhibidores , Metiltransferasas/genética , Metiltransferasas/inmunología , Metiltransferasas/metabolismo , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Receptor de Muerte Celular Programada 1/genética , Receptor de Muerte Celular Programada 1/inmunología , Receptor de Muerte Celular Programada 1/metabolismo , Proteínas Represoras/antagonistas & inhibidores , Proteínas Represoras/genética , Proteínas Represoras/metabolismoRESUMEN
BACKGROUND & AIMS: Upon hepatitis B virus (HBV) infection, partially double-stranded viral DNA converts into a covalently closed circular chromatinized episomal structure (cccDNA). This form represents the long-lived genomic reservoir responsible for viral persistence in the infected liver. Although the involvement of host cell DNA damage response in cccDNA formation has been established, this work investigated the yet-to-be-identified histone dynamics on cccDNA during early phases of infection in human hepatocytes. METHODS: Detailed studies of host chromatin-associated factors were performed in cell culture models of natural infection (ie, Na+-taurocholate cotransporting polypeptide (NTCP)-overexpressing HepG2 cells, HepG2hNTCP) and primary human hepatocytes infected with HBV, by cccDNA-specific chromatin immunoprecipitation and loss-of-function experiments during early kinetics of viral minichromosome establishment and onset of viral transcription. RESULTS: Our results show that cccDNA formation requires the deposition of the histone variant H3.3 via the histone regulator A (HIRA)-dependent pathway. This occurs simultaneously with repair of the cccDNA precursor and independently from de novo viral protein expression. Moreover, H3.3 in its S31 phosphorylated form appears to be the preferential H3 variant found on transcriptionally active cccDNA in infected cultured cells and human livers. HIRA depletion after cccDNA pool establishment showed that HIRA recruitment is required for viral transcription and RNA production. CONCLUSIONS: Altogether, we show a crucial role for HIRA in the interplay between HBV genome and host cellular machinery to ensure the formation and active transcription of the viral minichromosome in infected hepatocytes.
Asunto(s)
Virus de la Hepatitis B , Hepatitis B , Proteínas de Ciclo Celular/metabolismo , ADN Circular/genética , ADN Viral/genética , Células Hep G2 , Hepatitis B/genética , Hepatitis B/metabolismo , Virus de la Hepatitis B/genética , Hepatocitos/metabolismo , Chaperonas de Histonas/genética , Chaperonas de Histonas/metabolismo , Histonas/metabolismo , Humanos , Factores de Transcripción/metabolismo , Replicación ViralRESUMEN
The lack of a consensus DNA sequence defining replication origins in mammals has led researchers to consider chromatin as a means to specify these regions. However, to date, there is no mechanistic understanding of how this could be achieved and maintained given that nucleosome disruption occurs with each fork passage and with transcription. Here, by genome-wide mapping of the de novo deposition of the histone variants H3.1 and H3.3 in human cells during S phase, we identified how their dual deposition mode ensures a stable marking with H3.3 flanked on both sides by H3.1. These H3.1/H3.3 boundaries correspond to the initiation zones of early origins. Loss of the H3.3 chaperone HIRA leads to the concomitant disruption of H3.1/H3.3 boundaries and initiation zones. We propose that the HIRA-dependent deposition of H3.3 preserves H3.1/H3.3 boundaries by protecting them from H3.1 invasion linked to fork progression, contributing to a chromatin-based definition of early replication zones.
Asunto(s)
Chaperonas de Histonas , Factores de Transcripción , Animales , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Cromatina/genética , Chaperonas de Histonas/genética , Chaperonas de Histonas/metabolismo , Histonas/genética , Humanos , Mamíferos/genética , Mamíferos/metabolismo , Factores de Transcripción/metabolismoRESUMEN
Effective biomarkers predictive of the response to treatments are key for precision medicine. This study identifies the staining pattern of the centromeric histone 3 variant, CENP-A, as a predictive biomarker of locoregional disease curability by chemoradiation therapy. We compared by imaging the subnuclear distribution of CENP-A in normal and tumoral tissues, and in a retrospective study in biopsies of 62 locally advanced head and neck squamous cell carcinoma (HNSCC) patients treated by chemoradiation therapy. We looked for predictive factors of locoregional disease control and patient's survival, including CENP-A patterns, Ki67, HPV status and anisokaryosis. In different normal tissues, we reproducibly found a CENP-A subnuclear pattern characterized by CENP-A clusters both localized at the nuclear periphery and regularly spaced. In corresponding tumors, both features are lost. In locally advanced HNSCC, a specific CENP-A pattern identified in pretreatment biopsies predicts definitive locoregional disease control after chemoradiation treatment in 96% (24/25) of patients (OR = 17.6 CI 95% [2.6; 362.8], p = 0.002), independently of anisokaryosis, Ki67 labeling or HPV status. The characteristics of the subnuclear pattern of CENP-A in cell nuclei revealed by immunohistochemistry could provide an easy to use a reliable marker of disease curability by chemoradiation therapy in locally advanced HNSCC patients.
RESUMEN
The transcriptional repression of alternative lineage genes is critical for cell fate commitment. Mechanisms by which locus-specific gene silencing is initiated and heritably maintained during cell division are not clearly understood. To study the maintenance of silent gene states, we investigated how the Cd4 gene is stably repressed in CD8+ T cells. Through CRISPR and shRNA screening, we identified the histone chaperone CAF-1 as a critical component for Cd4 repression. We found that the large subunit of CAF-1, Chaf1a, requires the N-terminal KER domain to associate with the histone deacetylases HDAC1/2 and the histone demethylase LSD1, enzymes that also participate in Cd4 silencing. When CAF-1 was lacking, Cd4 derepression was markedly enhanced in the absence of the de novo DNA methyltransferase Dnmt3a but not the maintenance DNA methyltransferase Dnmt1. In contrast to Dnmt1, Dnmt3a deficiency did not significantly alter levels of DNA methylation at the Cd4 locus. Instead, Dnmt3a deficiency sensitized CD8+ T cells to Cd4 derepression mediated by compromised functions of histone-modifying factors, including the enzymes associated with CAF-1. Thus, we propose that the heritable silencing of the Cd4 gene in CD8+ T cells exploits cooperative functions among the DNA methyltransferases, CAF-1, and histone-modifying enzymes.
Asunto(s)
Antígenos CD4/genética , Factor 1 de Ensamblaje de la Cromatina/metabolismo , ADN (Citosina-5-)-Metiltransferasas/metabolismo , Proteína 4 de Unión a Retinoblastoma/metabolismo , Linfocitos T Citotóxicos/inmunología , Linfocitos T Citotóxicos/metabolismo , Animales , Antígenos CD4/metabolismo , ADN (Citosina-5-)-Metiltransferasa 1/genética , ADN (Citosina-5-)-Metiltransferasa 1/metabolismo , ADN (Citosina-5-)-Metiltransferasas/genética , ADN Metiltransferasa 3A , Femenino , Regulación de la Expresión Génica , Silenciador del Gen , Chaperonas de Histonas/metabolismo , Histona Desacetilasas/metabolismo , Histonas/metabolismo , Masculino , Ratones , Dominios ProteicosRESUMEN
A loss-of-function mutation in tetratricopeptide repeat domain 7A (TTC7A) is a recently identified cause of human intestinal and immune disorders. However, clues to related underlying molecular dysfunctions remain elusive. It is now shown based on the study of TTC7A-deficient and wild-type cells that TTC7A is an essential nuclear protein. It binds to chromatin, preferentially at actively transcribed regions. Its depletion results in broad range of epigenomic changes at proximal and distal transcriptional regulatory elements and in altered control of the transcriptional program. Loss of WT_TTC7A induces general decrease in chromatin compaction, unbalanced cellular distribution of histones, higher nucleosome accessibility to nuclease digestion along with genome instability, and reduced cell viability. Our observations characterize for the first time unreported functions for TTC7A in the nucleus that exert a critical role in chromatin organization and gene regulation to safeguard healthy immune and intestinal status.
RESUMEN
During development and throughout life, a variety of specialized cells must be generated to ensure the proper function of each tissue and organ. Chromatin plays a key role in determining cellular state, whether totipotent, pluripotent, multipotent, or differentiated. We highlight chromatin dynamics involved in the generation of pluripotent stem cells as well as their influence on cell fate decision and reprogramming. We focus on the capacity of histone variants, chaperones, modifications, and heterochromatin factors to influence cell identity and its plasticity. Recent technological advances have provided tools to elucidate the underlying chromatin dynamics for a better understanding of normal development and pathological conditions, with avenues for potential therapeutic application.
Asunto(s)
Ensamble y Desensamble de Cromatina , Cromatina/fisiología , Células Madre Pluripotentes/fisiología , Animales , Cromatina/metabolismo , Cromatina/ultraestructura , Histonas/metabolismo , Humanos , Chaperonas Moleculares/metabolismo , Células Madre Pluripotentes/metabolismoRESUMEN
DNA replication is a challenge for the faithful transmission of parental information to daughter cells, as both DNA and chromatin organization must be duplicated. Replication stress further complicates the safeguard of epigenome integrity. Here, we investigate the transmission of the histone variants H3.3 and H3.1 during replication. We follow their distribution relative to replication timing, first in the genome and, second, in 3D using super-resolution microscopy. We find that H3.3 and H3.1 mark early- and late-replicating chromatin, respectively. In the nucleus, H3.3 forms domains, which decrease in density throughout replication, while H3.1 domains increase in density. Hydroxyurea impairs local recycling of parental histones at replication sites. Similarly, depleting the histone chaperone ASF1 affects recycling, leading to an impaired histone variant landscape. We discuss how faithful transmission of histone variants involves ASF1 and can be impacted by replication stress, with ensuing consequences for cell fate and tumorigenesis.
Asunto(s)
Proteínas de Ciclo Celular/química , Cromatina/química , Replicación del ADN , Histonas/química , Linaje de la Célula , ADN/química , Epigénesis Genética , Genoma Humano , Células HeLa , Humanos , Hidroxiurea/química , Microscopía , Microscopía Fluorescente , Chaperonas Moleculares , Nucleosomas/química , Fase SRESUMEN
During cell division, maintenance of chromatin features from the parental genome requires their proper establishment on its newly synthetized copy. The loss of epigenetic marks within heterochromatin, typically enriched in repetitive elements, endangers genome stability and permits chromosomal rearrangements via recombination. However, how histone modifications associated with heterochromatin are maintained across mitosis remains poorly understood. KAP1 is known to act as a scaffold for a repressor complex that mediates local heterochromatin formation, and was previously demonstrated to play an important role during DNA repair. Accordingly, we investigated a putative role for this protein in the replication of heterochromatic regions. We first found that KAP1 associates with several DNA replication factors including PCNA, MCM3 and MCM6. We then observed that these interactions are promoted by KAP1 phosphorylation on serine 473 during S phase. Finally, we could demonstrate that KAP1 forms a complex with PCNA and the histone-lysine methyltransferase Suv39h1 to reinstate heterochromatin after DNA replication.
Asunto(s)
Ensamble y Desensamble de Cromatina/genética , Replicación del ADN/fisiología , Heterocromatina/metabolismo , Proteína 28 que Contiene Motivos Tripartito/fisiología , Animales , Células Cultivadas , Células HEK293 , Células HeLa , Humanos , Células K562 , Metiltransferasas/metabolismo , Ratones , Células 3T3 NIH , Fosforilación , Antígeno Nuclear de Célula en Proliferación/metabolismo , Procesamiento Proteico-Postraduccional , Proteínas Represoras/metabolismoRESUMEN
After priming, naïve CD8+ T lymphocytes establish specific heritable transcription programs that define progression to long-lasting memory cells or to short-lived effector cells. Although lineage specification is critical for protection, it remains unclear how chromatin dynamics contributes to the control of gene expression programs. We explored the role of gene silencing by the histone methyltransferase Suv39h1. In murine CD8+ T cells activated after Listeria monocytogenes infection, Suv39h1-dependent trimethylation of histone H3 lysine 9 controls the expression of a set of stem cell-related memory genes. Single-cell RNA sequencing revealed a defect in silencing of stem/memory genes selectively in Suv39h1-defective T cell effectors. As a result, Suv39h1-defective CD8+ T cells show sustained survival and increased long-term memory reprogramming capacity. Thus, Suv39h1 plays a critical role in marking chromatin to silence stem/memory genes during CD8+ T effector terminal differentiation.
Asunto(s)
Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo , Silenciador del Gen , N-Metiltransferasa de Histona-Lisina/metabolismo , Memoria Inmunológica , Listeriosis/inmunología , Metiltransferasas/metabolismo , Proteínas Represoras/metabolismo , Animales , Diferenciación Celular , Células Cultivadas , Cromatina/metabolismo , Epigénesis Genética , Femenino , N-Metiltransferasa de Histona-Lisina/genética , Histonas/metabolismo , Listeria monocytogenes/inmunología , Masculino , Metilación , Metiltransferasas/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas Represoras/genéticaRESUMEN
The trimethylation of histone H3 on lysine 9 (H3K9me3) - a mark recognized by HP1 that depends on the Suv39h lysine methyltransferases (KMTs) - has provided a basis for the reader/writer model to explain HP1 accumulation at pericentric heterochromatin in mammals. Here, we identify the Suv39h1 paralog, as a unique enhancer of HP1α sumoylation both in vitro and in vivo. The region responsible for promoting HP1α sumoylation (aa1-167) is distinct from the KMT catalytic domain and mediates binding to Ubc9. Tethering the 1-167 domain of Suv39h1 to pericentric heterochromatin, but not mutants unable to bind Ubc9, accelerates the de novo targeting of HP1α to these domains. Our results establish an unexpected feature of Suv39h1, distinct from the KMT activity, with a major role for heterochromatin formation. We discuss how linking Suv39h1 to the SUMO pathway provides conceptual implications for our general view on nuclear domain organization and physiological functions.
Asunto(s)
Proteínas Cromosómicas no Histona/metabolismo , Heterocromatina/metabolismo , Metiltransferasas/metabolismo , Proteínas Represoras/metabolismo , Transducción de Señal , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/metabolismo , Aminoácidos/metabolismo , Animales , Homólogo de la Proteína Chromobox 5 , Metiltransferasas/química , Ratones , Modelos Biológicos , Células 3T3 NIH , Unión Proteica , Dominios Proteicos , Transporte de Proteínas , Proteínas Represoras/química , Sumoilación , Enzimas Ubiquitina-Conjugadoras/metabolismoRESUMEN
The Suv39h lysine methyltransferases, known as key enzymes responsible for histone H3 lysine 9 methylation, are critical for heterochromatin protein 1 enrichment at constitutive heterochromatin. Our recent findings reveal a new role for the Suv39h1 paralog that links it to SUMO pathway function at constitutive heterochromatin.
RESUMEN
HP1 enrichment at pericentric heterochromatin is essential for proper chromosome segregation. While H3K9me3 is thought to be a major contributor to HP1 enrichment at pericentric domains, in mouse cells, the SUMO-protease SENP7 is required in addition to H3K9me3. How this is achieved remains elusive. Here, we find that loss of SENP7 leads to an increased time spent in mitosis. Furthermore, we reveal that a short module comprising two consecutive HP1 interaction motifs on SENP7 is the determinant for HP1 enrichment and acts by restricting HP1 mobility at pericentric domains. We propose a mechanism for maintenance of HP1 enrichment in which this module functions on top of H3K9me3 to lock contiguous HP1 molecules already docked on H3K9me3-modified nucleosomes. H3K9me3 would thus promote HP1 enrichment only if a locking system is in place. This mechanism may apply to other nuclear domains to contribute to the control of genome plasticity and integrity.
RESUMEN
The functional organization of eukaryotic DNA into chromatin uses histones as components of its building block, the nucleosome. Histone chaperones, which are proteins that escort histones throughout their cellular life, are key actors in all facets of histone metabolism; they regulate the supply and dynamics of histones at chromatin for its assembly and disassembly. Histone chaperones can also participate in the distribution of histone variants, thereby defining distinct chromatin landscapes of importance for genome function, stability, and cell identity. Here, we discuss our current knowledge of the known histone chaperones and their histone partners, focusing on histone H3 and its variants. We then place them into an escort network that distributes these histones in various deposition pathways. Through their distinct interfaces, we show how they affect dynamics during DNA replication, DNA damage, and transcription, and how they maintain genome integrity. Finally, we discuss the importance of histone chaperones during development and describe how misregulation of the histone flow can link to disease.
Asunto(s)
Cromatina/química , Chaperonas de Histonas/química , Histonas/química , Nucleosomas/química , Animales , Proteínas de Ciclo Celular/metabolismo , ADN/química , Daño del ADN , Replicación del ADN , ADN Cruciforme/química , Histonas/metabolismo , Humanos , Unión ProteicaRESUMEN
Understanding the mechanisms that lead to replication fork blocks (RFB) and the means to bypass them is important given the threat that they represent for genome stability if inappropriately handled. Here, to study this issue in mammals, we use integrated arrays of the LacO and/or TetO as a tractable system to follow in time a process in an individual cell and at a single locus. Importantly, we show that induction of the binding by LacI and TetR proteins, and not the presence of the repeats, is key to form the RFB. We find that the binding of the proteins to the arrays during replication causes a prolonged persistence of replication foci at the site. This, in turn, induces a local DNA damage repair (DDR) response, with the recruitment of proteins involved in double-strand break (DSB) repair such as TOPBP1 and 53BP1, and the phosphorylation of H2AX. Furthermore, the appearance of micronuclei and DNA bridges after mitosis is consistent with an incomplete replication. We discuss how the many DNA binding proteins encountered during replication can be dealt with and the consequences of incomplete replication. Future studies exploiting this type of system should help analyze how an RFB, along with bypass mechanisms, are controlled in order to maintain genome integrity.
Asunto(s)
Replicación del ADN , Proteínas de Unión al ADN/metabolismo , Animales , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Línea Celular Tumoral , Roturas del ADN de Doble Cadena , Reparación del ADN , Proteínas de Unión al ADN/genética , Histonas/genética , Histonas/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Ratones , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fosforilación , Fase S , Proteína 1 de Unión al Supresor Tumoral P53RESUMEN
The eukaryotic genome is replicated according to a specific spatio-temporal programme. However, little is known about both its molecular control and biological significance. Here, we identify mouse Rif1 as a key player in the regulation of DNA replication timing. We show that Rif1 deficiency in primary cells results in an unprecedented global alteration of the temporal order of replication. This effect takes place already in the first S-phase after Rif1 deletion and is neither accompanied by alterations in the transcriptional landscape nor by major changes in the biochemical identity of constitutive heterochromatin. In addition, Rif1 deficiency leads to both defective G1/S transition and chromatin re-organization after DNA replication. Together, these data offer a novel insight into the global regulation and biological significance of the replication-timing programme in mammalian cells.