Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
Res Sq ; 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38883790

RESUMEN

The cytoplasmic RIG-I-like receptors (RLRs) recognize viral RNA and initiate innate antiviral immunity. RLR signaling also triggers glycolytic reprogramming through glucose transporters (GLUTs), whose role in antiviral immunity is elusive. Here, we unveil that insulin-responsive GLUT4 inhibits RLR signaling independently of glucose uptake in adipose and muscle tissues. At steady state, GLUT4 is docked at the Golgi matrix by ubiquitin regulatory X domain 9 (UBXN9, TUG). Following RNA virus infection, GLUT4 is released and translocated to the cell surface where it spatially segregates a significant pool of cytosolic RLRs, preventing them from activating IFN-ß responses. UBXN9 deletion prompts constitutive GLUT4 trafficking, sequestration of RLRs, and attenuation of antiviral immunity, whereas GLUT4 deletion heightens RLR signaling. Notably, reduced GLUT4 expression is uniquely associated with human inflammatory myopathies characterized by hyperactive interferon responses. Overall, our results demonstrate a noncanonical UBXN9-GLUT4 axis that controls antiviral immunity via plasma membrane tethering of cytosolic RLRs.

2.
Artículo en Inglés | MEDLINE | ID: mdl-38752350

RESUMEN

BACKGROUND: A series of incurable cardiovascular disorders arise due to improper formation of elastin during development. Supravalvular aortic stenosis (SVAS), resulting from a haploinsufficiency of ELN, is caused by improper stress sensing by medial vascular smooth muscle cells, leading to progressive luminal occlusion and heart failure. SVAS remains incurable, as current therapies do not address the root issue of defective elastin. METHODS: We use SVAS here as a model of vascular proliferative disease using both human induced pluripotent stem cell-derived vascular smooth muscle cells and developmental Eln± mouse models to establish de novo elastin assembly as a new therapeutic intervention. RESULTS: We demonstrate mitigation of vascular proliferative abnormalities following de novo extracellular elastin assembly through the addition of the polyphenol epigallocatechin gallate to SVAS human induced pluripotent stem cell-derived vascular smooth muscle cells and in utero to Eln± mice. CONCLUSIONS: We demonstrate de novo elastin deposition normalizes SVAS human induced pluripotent stem cell-derived vascular smooth muscle cell hyperproliferation and rescues hypertension and aortic mechanics in Eln± mice, providing critical preclinical findings for the future application of epigallocatechin gallate treatment in humans.

3.
Am J Physiol Lung Cell Mol Physiol ; 324(6): L747-L755, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37014816

RESUMEN

To better define the role of mechanical forces in pulmonary emphysema, we employed methods recently developed in our laboratory to identify microscopic level relationships between airspace size and elastin-specific desmosine and isodesmosine (DID) cross links in normal and emphysematous human lungs. Free DID in wet tissue (a biomarker for elastin degradation) and total DID in formalin-fixed, paraffin-embedded (FFPE) tissue sections were measured using liquid chromatography-tandem mass spectrometry and correlated with alveolar diameter, as determined by the mean linear intercept (MLI) method. There was a positive correlation between free lung DID and MLI (P < 0.0001) in formalin-fixed lungs, and elastin breakdown was greatly accelerated when airspace diameter exceeded 400 µm. In FFPE tissue, DID density was markedly increased beyond 300 µm (P < 0.0001) and leveled off around 400 µm. Elastic fiber surface area similarly peaked at around 400 µm, but to a much lesser extent than DID density, indicating that elastin cross linking is markedly increased in response to early changes in airspace size. These findings support the hypothesis that airspace enlargement is an emergent phenomenon in which initial proliferation of DID cross links to counteract alveolar wall distention is followed by a phase transition involving rapid acceleration of elastin breakdown, alveolar wall rupture, and progression to an active disease state that is less amenable to therapeutic intervention.NEW & NOTEWORTHY The current findings support the hypothesis that airspace enlargement is an emergent phenomenon in which initial proliferation of DID cross links to counteract alveolar wall distention is followed by a phase transition involving rapid acceleration of elastin breakdown, alveolar wall rupture, and progression to an active disease state that is less amenable to therapeutic intervention.


Asunto(s)
Enfisema , Enfisema Pulmonar , Humanos , Enfisema Pulmonar/metabolismo , Elastina/metabolismo , Pulmón/metabolismo , Alveolos Pulmonares/metabolismo
4.
J Mol Cell Cardiol ; 174: 1-14, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36370475

RESUMEN

Familial cardiomyopathy is a precursor of heart failure and sudden cardiac death. Over the past several decades, researchers have discovered numerous gene mutations primarily in sarcomeric and cytoskeletal proteins causing two different disease phenotypes: hypertrophic (HCM) and dilated (DCM) cardiomyopathies. However, molecular mechanisms linking genotype to phenotype remain unclear. Here, we employ a systems approach by integrating experimental findings from preclinical studies (e.g., murine data) into a cohesive signaling network to scrutinize genotype to phenotype mechanisms. We developed an HCM/DCM signaling network model utilizing a logic-based differential equations approach and evaluated model performance in predicting experimental data from four contexts (HCM, DCM, pressure overload, and volume overload). The model has an overall prediction accuracy of 83.8%, with higher accuracy in the HCM context (90%) than DCM (75%). Global sensitivity analysis identifies key signaling reactions, with calcium-mediated myofilament force development and calcium-calmodulin kinase signaling ranking the highest. A structural revision analysis indicates potential missing interactions that primarily control calcium regulatory proteins, increasing model prediction accuracy. Combination pharmacotherapy analysis suggests that downregulation of signaling components such as calcium, titin and its associated proteins, growth factor receptors, ERK1/2, and PI3K-AKT could inhibit myocyte growth in HCM. In experiments with patient-specific iPSC-derived cardiomyocytes (MLP-W4R;MYH7-R723C iPSC-CMs), combined inhibition of ERK1/2 and PI3K-AKT rescued the HCM phenotype, as predicted by the model. In DCM, PI3K-AKT-NFAT downregulation combined with upregulation of Ras/ERK1/2 or titin or Gq protein could ameliorate cardiomyocyte morphology. The model results suggest that HCM mutations that increase active force through elevated calcium sensitivity could increase ERK activity and decrease eccentricity through parallel growth factors, Gq-mediated, and titin pathways. Moreover, the model simulated the influence of existing medications on cardiac growth in HCM and DCM contexts. This HCM/DCM signaling model demonstrates utility in investigating genotype to phenotype mechanisms in familial cardiomyopathy.


Asunto(s)
Cardiomiopatías , Cardiomiopatía Hipertrófica , Insuficiencia Cardíaca , Animales , Ratones , Conectina/genética , Conectina/metabolismo , Miocitos Cardíacos/metabolismo , Cardiomiopatía Hipertrófica/genética , Calcio/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Cardiomiopatías/metabolismo , Insuficiencia Cardíaca/metabolismo
5.
Circulation ; 145(16): 1238-1253, 2022 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-35384713

RESUMEN

BACKGROUND: Familial hypertrophic cardiomyopathy (HCM) is the most common inherited cardiac disease and is typically caused by mutations in genes encoding sarcomeric proteins that regulate cardiac contractility. HCM manifestations include left ventricular hypertrophy and heart failure, arrythmias, and sudden cardiac death. How dysregulated sarcomeric force production is sensed and leads to pathological remodeling remains poorly understood in HCM, thereby inhibiting the efficient development of new therapeutics. METHODS: Our discovery was based on insights from a severe phenotype of an individual with HCM and a second genetic alteration in a sarcomeric mechanosensing protein. We derived cardiomyocytes from patient-specific induced pluripotent stem cells and developed robust engineered heart tissues by seeding induced pluripotent stem cell-derived cardiomyocytes into a laser-cut scaffold possessing native cardiac fiber alignment to study human cardiac mechanobiology at both the cellular and tissue levels. Coupled with computational modeling for muscle contraction and rescue of disease phenotype by gene editing and pharmacological interventions, we have identified a new mechanotransduction pathway in HCM, shown to be essential in modulating the phenotypic expression of HCM in 5 families bearing distinct sarcomeric mutations. RESULTS: Enhanced actomyosin crossbridge formation caused by sarcomeric mutations in cardiac myosin heavy chain (MYH7) led to increased force generation, which, when coupled with slower twitch relaxation, destabilized the MLP (muscle LIM protein) stretch-sensing complex at the Z-disc. Subsequent reduction in the sarcomeric muscle LIM protein level caused disinhibition of calcineurin-nuclear factor of activated T-cells signaling, which promoted cardiac hypertrophy. We demonstrate that the common muscle LIM protein-W4R variant is an important modifier, exacerbating the phenotypic expression of HCM, but alone may not be a disease-causing mutation. By mitigating enhanced actomyosin crossbridge formation through either genetic or pharmacological means, we alleviated stress at the Z-disc, preventing the development of hypertrophy associated with sarcomeric mutations. CONCLUSIONS: Our studies have uncovered a novel biomechanical mechanism through which dysregulated sarcomeric force production is sensed and leads to pathological signaling, remodeling, and hypertrophic responses. Together, these establish the foundation for developing innovative mechanism-based treatments for HCM that stabilize the Z-disc MLP-mechanosensory complex.


Asunto(s)
Cardiomiopatía Hipertrófica Familiar , Cardiomiopatía Hipertrófica , Actomiosina/genética , Humanos , Proteínas con Dominio LIM , Mecanotransducción Celular , Proteínas Musculares , Mutación , Miocitos Cardíacos
7.
J Mol Cell Cardiol ; 163: 167-174, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34979103

RESUMEN

Tissue engineered vascular grafts possess several advantages over synthetic or autologous grafts, including increased availability and reduced rates of infection and thrombosis. Engineered grafts constructed from human induced pluripotent stem cell derivatives further offer enhanced reproducibility in graft production. One notable obstacle to clinical application of these grafts is the lack of elastin in the vessel wall, which would serve to endow compliance in addition to mechanical strength. This study establishes the ability of the polyphenol compound epigallocatechin gallate, a principal component of green tea, to facilitate the extracellular formation of elastin fibers in vascular smooth muscle cells derived from human induced pluripotent stem cells. Further, this study describes the creation of a doxycycline-inducible elastin expression system to uncouple elastin production from vascular smooth muscle cell proliferative capacity to permit fiber formation in conditions conducive to robust tissue engineering.


Asunto(s)
Células Madre Pluripotentes Inducidas , Ingeniería de Tejidos , Catequina/análogos & derivados , Elastina/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo , Reproducibilidad de los Resultados
8.
Methods Mol Biol ; 2375: 21-34, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34591296

RESUMEN

Despite numerous efforts to generate vascular tissues that recapitulate the physiological characteristics of native vessels, vascular cell source remains one of the principal challenges in the construction of tissue-engineered vascular grafts (TEVGs). Human pluripotent stem cells, therefore, represent an indispensable source to supply a large production of vascular smooth muscle cells (VSMCs) for cell-based therapy. In particular, human induced pluripotent stem cells (hiPSCs) generated from the same individual have opened up new avenues of achieving patient specificity through the derivation of autologous and immunocompatible VSMCs. This book chapter will detail three representative methods of differentiating hiPSCs into VSMCs that are structurally and functionally mature for TEVG engineering. Luo et al. reported an embryoid body (EB)-based approach to generate a robust, large-scale production of mature, functional hiPSC-derived VSMCs as a cell replacement for vascular tissue engineering. EB formation has an advantage of resembling early embryonic development and allowing cellular interactions in three dimensions. Cheung et al. established a system to produce embryological origin-specific hiPSC-derived VSMCs from the neuroectoderm, lateral plate mesoderm, and paraxial mesoderm lineages in a chemically defined manner. This allows site-specific vascular disease modeling. Moreover, Eoh et al. followed Wanjare et al.'s method to construct hiPSC-derived VSMCs using monolayer cultures of extracellular matrix proteins, with the addition of a pulsatile flow for the secretion of mature, organized elastic fibers. The generation of TEVGs, powered by the unlimited supply of hiPSC-derived VSMCs, has begun a new era in cellular therapy for vascular bypass and defective vessel segment replacement, aimed at addressing millions of cases of cardiovascular diseases across the globe.


Asunto(s)
Células Madre Pluripotentes Inducidas , Músculo Liso Vascular , Diferenciación Celular , Humanos , Miocitos del Músculo Liso , Ingeniería de Tejidos
9.
J Gen Physiol ; 153(9)2021 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-34319370

RESUMEN

Hypertrophic cardiomyopathy (HCM) is an inherited disorder caused primarily by mutations to thick and thinfilament proteins. Although thin filament mutations are less prevalent than their oft-studied thick filament counterparts, they are frequently associated with severe patient phenotypes and can offer important insight into fundamental disease mechanisms. We have performed a detailed study of tropomyosin (TPM1) E192K, a variant of uncertain significance associated with HCM. Molecular dynamics revealed that E192K results in a more flexible TPM1 molecule, which could affect its ability to regulate crossbridges. In vitro motility assays of regulated actin filaments containing TPM1 E192K showed an overall loss of Ca2+ sensitivity. To understand these effects, we used multiscale computational models that suggested a subtle phenotype in which E192K leads to an inability to completely inhibit actin-myosin crossbridge activity at low Ca2+. To assess the physiological impact of the mutation, we generated patient-derived engineered heart tissues expressing E192K. These tissues showed disease features similar to those of the patients, including cellular hypertrophy, hypercontractility, and diastolic dysfunction. We hypothesized that excess residual crossbridge activity could be triggering cellular hypertrophy, even if the overall Ca2+ sensitivity was reduced by E192K. To test this hypothesis, the cardiac myosin-specific inhibitor mavacamten was applied to patient-derived engineered heart tissues for 4 d followed by 24 h of washout. Chronic mavacamten treatment abolished contractile differences between control and TPM1 E192K engineered heart tissues and reversed hypertrophy in cardiomyocytes. These results suggest that the TPM1 E192K mutation triggers cardiomyocyte hypertrophy by permitting excess residual crossbridge activity. These studies also provide direct evidence that myosin inhibition by mavacamten can counteract the hypertrophic effects of mutant tropomyosin.


Asunto(s)
Miosinas , Tropomiosina , Miosinas Cardíacas , Cardiomegalia/genética , Humanos , Mutación , Tropomiosina/genética
10.
Biomaterials ; 275: 120911, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34087584

RESUMEN

Conventional in vitro methods for biological evaluation of intra-arterial devices such as stents fail to accurately predict cytotoxicity and remodeling events. An ex vivo flow-tunable vascular bioreactor system (VesselBRx), comprising intra- and extra-luminal monitoring capabilities, addresses these limitations. VesselBRx mimics the in vivo physiological, hyperplastic, and cytocompatibility events of absorbable magnesium (Mg)-based stents in ex vivo stent-treated porcine and human coronary arteries, with in-situ and real-time monitoring of local stent degradation effects. Unlike conventional, static cell culture, the VesselBRx perfusion system eliminates unphysiologically high intracellular Mg2+ concentrations and localized O2 consumption resulting from stent degradation. Whereas static stented arteries exhibited only 20.1% cell viability and upregulated apoptosis, necrosis, metallic ion, and hypoxia-related gene signatures, stented arteries in VesselBRx showed almost identical cell viability to in vivo rabbit models (~94.0%). Hyperplastic intimal remodeling developed in unstented arteries subjected to low shear stress, but was inhibited by Mg-based stents in VesselBRx, similarly to in vivo. VesselBRx represents a critical advance from the current static culture standard of testing absorbable vascular implants.


Asunto(s)
Vasos Coronarios , Stents , Implantes Absorbibles , Animales , Hiperplasia/patología , Conejos , Porcinos , Túnica Íntima/patología
12.
Cells ; 10(4)2021 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-33918299

RESUMEN

Induced pluripotent stem cells (iPSC) represent an innovative, somatic cell-derived, easily obtained and renewable stem cell source without considerable ethical issues. iPSC and their derived cells may have enhanced therapeutic and translational potential compared with other stem cells. We previously showed that human iPSC-derived smooth muscle cells (hiPSC-SMC) promote angiogenesis and wound healing. Accordingly, we hypothesized that hiPSC-SMC may be a novel treatment for human patients with chronic limb-threatening ischemia who have no standard options for therapy. We determined the angiogenic potential of hiPSC-SMC in a murine hindlimb ischemia model. hiPSC-SMC were injected intramuscularly into nude mice after creation of hindlimb ischemia. Functional outcomes and perfusion were measured using standardized scores, laser Doppler imaging, microCT, histology and immunofluorescence. Functional outcomes and blood flow were improved in hiPSC-SMC-treated mice compared with controls (Tarlov score, p < 0.05; Faber score, p < 0.05; flow, p = 0.054). hiPSC-SMC-treated mice showed fewer gastrocnemius fibers (p < 0.0001), increased fiber area (p < 0.0001), and enhanced capillary density (p < 0.01); microCT showed more arterioles (<96 µm). hiPSC-SMC treatment was associated with fewer numbers of macrophages, decreased numbers of M1-type (p < 0.05) and increased numbers of M2-type macrophages (p < 0.0001). Vascular endothelial growth factor (VEGF) expression in ischemic limbs was significantly elevated with hiPSC-SMC treatment (p < 0.05), and inhibition of VEGFR-2 with SU5416 was associated with fewer capillaries in hiPSC-SMC-treated limbs (p < 0.0001). hiPSC-SMC promote VEGF-mediated angiogenesis, leading to improved hindlimb ischemia. Stem cell therapy using iPSC-derived cells may represent a novel and potentially translatable therapy for limb-threatening ischemia.


Asunto(s)
Miembro Posterior/irrigación sanguínea , Células Madre Pluripotentes Inducidas/trasplante , Isquemia/patología , Isquemia/terapia , Miocitos del Músculo Liso/trasplante , Neovascularización Fisiológica , Animales , Capilares/patología , Línea Celular , Femenino , Humanos , Células Madre Pluripotentes Inducidas/citología , Recién Nacido , Macrófagos/patología , Masculino , Ratones Desnudos , Músculos/irrigación sanguínea , Músculos/patología , Factor A de Crecimiento Endotelial Vascular/metabolismo
13.
Acta Biomater ; 119: 184-196, 2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-33166710

RESUMEN

Tissue engineered vascular grafts (TEVGs) represent a promising therapeutic option for emergency vascular intervention. Although the application of small-diameter TEVGs using patient-specific primary endothelial cells (ECs) to prevent thrombosis and occlusion prior to implantation could be hindered by the long time course required for in vitro endothelialization, human induced pluripotent stem cells (hiPSCs) provide a robust source to derive immunocompatible ECs (hiPSC-ECs) for immediate TEVG endothelialization. To achieve clinical application, hiPSC-ECs should be derived under culture conditions without the use of animal-derived reagents (xenogeneic-free conditions), to avoid unwanted host immune responses from xenogeneic reagents. However, a completely xenogeneic-free method of hiPSC-EC generation has not previously been established. Herein, we substituted animal-derived reagents used in a standard method of xenogeneic hiPSC-EC differentiation with functional counterparts of human origin. As a result, we generated xenogeneic-free hiPSC-ECs (XF-hiPSC-ECs) with similar marker expression and function to those of human primary ECs. Furthermore, XF-hiPSC-ECs functionally responded to shear stress with typical cell alignment and gene expression. Finally, we successfully endothelialized decellularized human vessels with XF-hiPSC-ECs in a dynamic bioreactor system. In conclusion, we developed xenogeneic-free conditions for generating functional hiPSC-ECs suitable for vascular tissue engineering, which will further move TEVG therapy toward clinical application.


Asunto(s)
Células Madre Pluripotentes Inducidas , Animales , Prótesis Vascular , Diferenciación Celular , Células Endoteliales , Humanos , Ingeniería de Tejidos
15.
Acta Biomater ; 119: 155-168, 2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-33130306

RESUMEN

Development of mechanically advanced tissue-engineered vascular grafts (TEVGs) from human induced pluripotent stem cell (hiPSC)-derived vascular smooth muscle cells (hiPSC-VSMCs) offers an innovative approach to replace or bypass diseased blood vessels. To move current hiPSC-TEVGs toward clinical application, it is essential to obtain hiPSC-VSMC-derived tissues under xenogeneic-free conditions, meaning without the use of any animal-derived reagents. Many approaches in VSMC differentiation of hiPSCs have been reported, although a xenogeneic-free method for generating hiPSC-VSMCs suitable for vascular tissue engineering has yet to be established. Based on our previously established standard method of xenogeneic VSMC differentiation, we have replaced all animal-derived reagents with functional counterparts of human origin and successfully derived functional xenogeneic-free hiPSC-VSMCs (XF-hiPSC-VSMCs). Next, our group developed tissue rings via cellular self-assembly from XF-hiPSC-VSMCs, which exhibited comparable mechanical strength to those developed from xenogeneic hiPSC-VSMCs. Moreover, by seeding XF-hiPSC-VSMCs onto biodegradable polyglycolic acid (PGA) scaffolds, we generated engineered vascular tissues presenting effective collagen deposition which were suitable for implantation into an immunodeficient mice model. In conclusion, our xenogeneic-free conditions for generating hiPSC-VSMCs produce cells with the comparable capacity for vascular tissue engineering as standard xenogeneic protocols, thereby moving the hiPSC-TEVG technology one step closer to safe and efficacious clinical translation.


Asunto(s)
Células Madre Pluripotentes Inducidas , Animales , Diferenciación Celular , Humanos , Ratones , Músculo Liso Vascular , Miocitos del Músculo Liso , Ingeniería de Tejidos
16.
Am J Physiol Heart Circ Physiol ; 318(6): H1516-H1524, 2020 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-32383992

RESUMEN

Engineered heart tissues (EHTs) have emerged as a robust in vitro model to study cardiac physiology. Although biomimetic culture environments have been developed to better approximate in vivo conditions, currently available methods do not permit full recapitulation of the four phases of the cardiac cycle. We have developed a bioreactor which allows EHTs to undergo cyclic loading sequences that mimic in vivo work loops. EHTs cultured under these working conditions exhibited enhanced concentric contractions but similar isometric contractions compared with EHTs cultured isometrically. EHTs that were allowed to shorten cyclically in culture had increased capacity for contractile work when tested acutely. Increased work production was correlated with higher levels of mitochondrial proteins and mitochondrial biogenesis; this effect was eliminated when tissues were cyclically shortened in the presence of a myosin ATPase inhibitor. Leveraging our novel in vitro method to precisely apply mechanical loads in culture, we grew EHTs under two loading regimes prescribing the same work output but with different associated afterloads. These groups showed no difference in mitochondrial protein expression. In loading regimes with the same afterload but different work output, tissues subjected to higher work demand exhibited elevated levels of mitochondrial protein. Our findings suggest that regulation of mitochondrial mass in cultured human EHTs is potently modulated by the mechanical work the tissue is permitted to perform in culture, presumably communicated through ATP demand. Precise application of mechanical loads to engineered heart tissues in culture represents a novel in vitro method for studying physiological and pathological cardiac adaptation.NEW & NOTEWORTHY In this work, we present a novel bioreactor that allows for active length control of engineered heart tissues during extended tissue culture. Specific length transients were designed so that engineered heart tissues generated complete cardiac work loops. Chronic culture with various work loops suggests that mitochondrial mass and biogenesis are directly regulated by work output.


Asunto(s)
Mitocondrias Cardíacas/metabolismo , Proteínas Mitocondriales/metabolismo , Contracción Miocárdica/fisiología , Miocardio/metabolismo , Humanos , Ingeniería de Tejidos
17.
Regen Med ; 15(2): 1277-1293, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-32228292

RESUMEN

Aim: To assess the potential of human induced pluripotent stem cell-derived smooth muscle cells (hiPSC-SMC) to accelerate diabetic wound healing. Methods: hiPSC-SMC were embedded in 3D collagen scaffolds and cultured in vitro for 72 h; scaffolds were then applied to diabetic, nude mouse, splinted back wounds to assess in vivo healing. Cultured medium after scaffold incubation was collected and analyzed for expression of pro-angiogenic cytokines. Results: hiPSC-SMC secrete increased concentration of pro-angiogenic cytokines, compared with murine adipose derived stem cells. Delivery of hiPSC-SMC-containing collagen scaffolds accelerates diabetic wound healing and is associated with an increased number of total and M2 type macrophages. Conclusion: hiPSC-SMC promote angiogenesis and accelerate diabetic wound healing, making them a promising new candidate for treatment of diabetic wounds.


Asunto(s)
Diabetes Mellitus Experimental/complicaciones , Pie Diabético/terapia , Células Madre Pluripotentes Inducidas/citología , Células Madre Mesenquimatosas/citología , Miocitos del Músculo Liso/citología , Neovascularización Fisiológica , Cicatrización de Heridas , Animales , Pie Diabético/etiología , Pie Diabético/patología , Humanos , Masculino , Ratones , Ratones Desnudos
18.
Cell Stem Cell ; 26(2): 251-261.e8, 2020 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-31956039

RESUMEN

Vascular smooth muscle cells (VSMCs) can be derived in large numbers from human induced pluripotent stem cells (hiPSCs) for producing tissue-engineered vascular grafts (TEVGs). However, hiPSC-derived TEVGs are hampered by low mechanical strength and significant radial dilation after implantation. Here, we report generation of hiPSC-derived TEVGs with mechanical strength comparable to native vessels used in arterial bypass grafts by utilizing biodegradable scaffolds, incremental pulsatile stretching, and optimal culture conditions. Following implantation into a rat aortic model, hiPSC-derived TEVGs show excellent patency without luminal dilation and effectively maintain mechanical and contractile function. This study provides a foundation for future production of non-immunogenic, cellularized hiPSC-derived TEVGs composed of allogenic vascular cells, potentially serving needs to a considerable number of patients whose dysfunctional vascular cells preclude TEVG generation via other methods.


Asunto(s)
Prótesis Vascular , Células Madre Pluripotentes Inducidas , Humanos , Miocitos del Músculo Liso , Ingeniería de Tejidos
19.
Acta Biomater ; 102: 220-230, 2020 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-31634626

RESUMEN

Single ventricle heart defects (SVDs) are congenital disorders that result in a variety of complications, including increased ventricular mechanical strain and mixing of oxygenated and deoxygenated blood, leading to heart failure without surgical intervention. Corrective surgery for SVDs are traditionally handled by the Fontan procedure, requiring a vascular conduit for completion. Although effective, current conduits are limited by their inability to aid in pumping blood into the pulmonary circulation. In this report, we propose an innovative and versatile design strategy for a tissue engineered pulsatile conduit (TEPC) to aid circulation through the pulmonary system by producing contractile force. Several design strategies were tested for production of a functional TEPC. Ultimately, we found that porcine extracellular matrix (ECM)-based engineered heart tissue (EHT) composed of human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) and primary cardiac fibroblasts (HCF) wrapped around decellularized human umbilical artery (HUA) made an efficacious basal TEPC. Importantly, the TEPCs showed effective electrical and mechanical function. Initial pressure readings from our TEPC in vitro (0.68 mmHg) displayed efficient electrical conductivity enabling them to follow electrical pacing up to a 2 Hz frequency. This work represents a proof of principle study for our current TEPC design strategy. Refinement and optimization of this promising TEPC design will lay the groundwork for testing the construct's therapeutic potential in the future. Together this work represents a progressive step toward developing an improved treatment for SVD patients. STATEMENT OF SIGNIFICANCE: Single Ventricle Cardiac defects (SVD) are a form of congenital disorder with a morbid prognosis without surgical intervention. These patients are treated through the Fontan procedure which requires vascular conduits to complete. Fontan conduits have been traditionally made from stable or biodegradable materials with no pumping activity. Here, we propose a tissue engineered pulsatile conduit (TEPC) for use in Fontan circulation to alleviate excess strain in SVD patients. In contrast to previous strategies for making a pulsatile Fontan conduit, we employ a modular design strategy that allows for the optimization of each component individually to make a standalone tissue. This work sets the foundation for an in vitro, trainable human induced pluripotent stem cell based TEPC.


Asunto(s)
Células Madre Pluripotentes Inducidas/fisiología , Miocitos Cardíacos/fisiología , Ingeniería de Tejidos/métodos , Arterias Umbilicales/fisiología , Animales , Diferenciación Celular/fisiología , Colágeno Tipo I/química , Matriz Extracelular/fisiología , Femenino , Fibroblastos/citología , Fibroblastos/fisiología , Humanos , Células Madre Pluripotentes Inducidas/citología , Miocardio/citología , Miocitos Cardíacos/citología , Ácido Poliglicólico/química , Prueba de Estudio Conceptual , Porcinos , Andamios del Tejido/química
20.
JACC Basic Transl Sci ; 4(4): 495-505, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31468004

RESUMEN

Hypertrophic cardiomyopathy (HCM) is often caused by single sarcomeric gene mutations that affect muscle contraction. Pharmacological correction of mutation effects prevents but does not reverse disease in mouse models. Suspecting that diseased extracellular matrix is to blame, we obtained myocardium from a miniature swine model of HCM, decellularized thin slices of the tissue, and re-seeded them with healthy human induced pluripotent stem cell-derived cardiomyocytes. Compared with cardiomyocytes grown on healthy extracellular matrix, those grown on the diseased matrix exhibited prolonged contractions and poor relaxation. This outcome suggests that extracellular matrix abnormalities must be addressed in therapies targeting established HCM.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA