Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Mar Pollut Bull ; 206: 116671, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39024907

RESUMEN

Society's interest in rare earth elements (REEs) and their increasing use in many fields is leading to enrichments in aquatic environments, such as estuaries. This study of the Seine estuary assessed the distribution of REEs along the food web, including different species from 5 phyla representing different trophic levels. Total REE concentrations, which were higher in algae, mollusks, crustaceans and annelids (4.85-156; 1.59-4.08; 2.48 ± 1.80 and 0.14 ± 0.11 µg/g dw, respectively) than in vertebrates (0.03-0.15 µg/g dw), correlated with δ15N indicated a trophic dilution. REE contributions in the studied species were higher for light REEs than for heavy and medium REEs. Positives anomalies for Eu, Gd, Tb and Lu were highlighted particularly in vertebrates, possibly due to species-dependent bioaccumulation/detoxification or related to anthropogenic inputs. The calculated BAF and BSAF indicated an important partitioning of REEs in organisms compared to the dissolved phase and a limited transfer from sediment to organisms.

2.
Sci Total Environ ; 922: 171385, 2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38431160

RESUMEN

Rare earth elements (REEs), attractive to society because of their applications in industry, agriculture and medicine, are increasingly released into the environment especially in industrialized estuaries. This study compared the REE distribution in the abiotic compartments: water (dissolved phase (<0.45 µm), suspended particulate matter (SPM)) and sediment of the Loire and Seine estuaries (France). A total of 8 and 6 sites were investigated in the Loire and Seine, respectively, as well as 5 additional offshore sites for the Loire. Total REE concentrations were higher in the Loire for the dissolved phase (93.5 ± 63.3 vs 87.7 ± 16.2 ng/L), SPM (173.9 ± 18.3 vs 114.0 ± 17.8 mg/kg dw) and sediments (198.2 ± 27.9 vs 73.2 ± 27.4 mg/kg dw), explained by higher geogenic inputs. Individual REE contributions along with normalization highlighted heavy REE enrichments and Gd positive anomalies in the dissolved phase of the two estuaries, whereas REE distributions in SPM and sediments followed the natural abundance of the REE classes. The calculated Gd anomalies in the dissolved phase were higher in the Seine (9.7 ± 3.4) than in the Loire (3.0 ± 0.8), corresponding to 88.3 ± 5.1 % and 64.4 ± 11.1 % of anthropogenic Gd. This demonstrates a higher contamination of the Seine estuary, certainly due to the difference in the number of inhabitants between both areas involving different amounts of Gd used in medicine. The offshore sites of Loire showed lower total REE concentrations (55.8 ± 5.8 ng/L, 26.7 ± 38.2 mg/kg dw and 100.1 ± 11.7 mg/kg dw for the dissolved phase, SPM and sediments, respectively) and lower Gd anomalies (1.2 ± 0.2) corresponding to only 13.3 ± 3.9 % of anthropogenic Gd, confirming a contamination from the watershed. This study comparing two major French estuaries provides new data on the REE distribution in natural aquatic systems.


Asunto(s)
Metales de Tierras Raras , Contaminantes Químicos del Agua , Gadolinio/análisis , Estuarios , Monitoreo del Ambiente , Contaminantes Químicos del Agua/análisis , Ríos , Metales de Tierras Raras/análisis , Material Particulado/análisis , Francia , Ecosistema
3.
Sci Total Environ ; 914: 169652, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38159776

RESUMEN

The increasing use of rare earth elements (REEs) in many industrial sectors and in medecine, causes discharges into the environment and particularly in estuarine areas subjected to strong anthropogenic pressures. Here, we assessed the distribution of REEs along the food web of the Loire estuary. Several species representative of different trophic levels were sampled: 8 vertebrates, 3 crustaceans, 2 mollusks, 3 annelids and 4 algae, as well as Haploops sp. tubes rather related to sediment. The total REE concentrations measured by ICP-MS were the highest in Haploops sp. tubes (141.1 ± 4.7 µg/g dw), algae (1.5 to 34.5 µg/g dw), mollusks (9.9 to 12.0 µg/g dw), annelids (0.7 to 19.9 µg/g dw) and crustaceans (1.4 to 6.3 µg/g dw) and the lowest in vetebrates (0.1 to 1.6 µg/g dw). The individual contribution of REEs was, however, similar between most studied species with a higher contribution of light REEs (76.7 ± 7.6 %) compared to heavy REEs (14.1 ± 3.7 %) or medium REEs (9.2 ± 5.8 %). Trophic relations were estimated by stable isotope analysis of C and N and the linear regression of δ15N with total REE concentrations highlighted a trophic dilution with a corresponding TMS of -2.0. The tissue-specific bioaccumulation investigated for vertebrates demonstrated a slightly higher REE accumulation in gonads than in the muscle. Finally, positive Eu, Gd, Tb and Lu anomalies were highlighted in the normalized REE patterns of most studied species (especially in fish and crustaceans), which is consistent with results in the dissolved phase for Eu and Gd. These anomalies could either be due to anthropogenic inputs or to various bioaccumulation/elimination processes according to the specific species physiology. This study, including most of the trophic levels of the Loire estuary food web provides new insights on the bioaccumulation and trophic transfer of REEs in natural ecosystems.


Asunto(s)
Cadena Alimentaria , Metales de Tierras Raras , Animales , Ecosistema , Estuarios , Metales de Tierras Raras/análisis , Francia
4.
Sci Total Environ ; 905: 167302, 2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-37742965

RESUMEN

Rare earth elements (REE) are emerging contaminants due to their increased use in diverse applications including cutting-edge and green-technologies. Their environmental concerns and contradicting results concerning their biological effects require an extensive understanding of REE ecotoxicology. Thus, we have studied the fate, bioaccumulation and biological effects of three representative REE, neodymium (Nd), gadolinium (Gd) and ytterbium (Yb), individually and in mixture, using the freshwater bivalve Corbicula fluminea. The organisms were exposed for 96 h at 1 mg L-1 REE in the absence and presence of dissolved organic matter (DOM) reproducing an environmental contamination. Combined analysis of the fate, distribution and effects of REE at tissue and subcellular levels allowed a comprehensive understanding of their behaviour, which would help improving their environmental risk assessment. The bivalves accumulated significant concentrations of Nd, Gd and Yb, which were decreased in the presence of DOM likely due to the formation of REE-DOM complexes that reduced REE bioavailability. The accumulation of Nd, Gd and Yb differed between tissues, with gills > digestive gland ≥ rest of soft tissues > hemolymph. In the gills and in the digestive gland, Nd, Gd and Yb were mostly (>90 %) distributed among metal sensitive organelles, cellular debris and detoxified metal-rich granules. Gadolinium, Yb and especially Nd decreased lysosome size in the digestive gland and disturbed osmo- and iono-regulation of C. fluminea by decreasing Na concentrations in the hemolymph and Ca2+ ATPase activity in the gills. Individual and mixed Nd, Gd and Yb exhibited numerous similarities and some differences in terms of fate, accumulation and biological effects, possibly because they have common abiotic and biotic ligands but different affinities for the latter. In most cases, individual and mixed effects of Nd, Gd, Yb were similar suggesting that additivity approach is suitable for the environmental risk assessment of REE mixtures.


Asunto(s)
Corbicula , Metales de Tierras Raras , Contaminantes Químicos del Agua , Animales , Gadolinio/toxicidad , Gadolinio/análisis , Metales de Tierras Raras/toxicidad , Metales de Tierras Raras/análisis , Agua Dulce , Ecotoxicología , Contaminantes Químicos del Agua/análisis
5.
Sci Total Environ ; 856(Pt 2): 158890, 2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36262004

RESUMEN

The geochemistry of rare earth elements (REEs) has been studied for a long time and has allowed us to highlight enrichments or depletions of REEs in aquatic ecosystems and to estimate anthropogenic inputs through normalization of data to different reference materials. This review of current literature on REE normalization highlighted the large number of different reference materials (a total of 12), as well as different anomaly calculation methods. This statement showed a real need for method harmonization to simplify the comparison between studies, which is currently very difficult. Normalization to Post-Archean Australian Shale (PAAS) emerged as being the most used (33 % of reported studies) regardless of the location and the nature of the studied samples and seem to be of higher quality. The interest of other reference materials was nevertheless underlined, as they could better represent the geographical situation or the nature of samples. Two main anomaly calculation methods have been highlighted: the linear interpolation/extrapolation and the geometric extrapolation using logarithmic modeling. However, due to variations in the estimation of neighbors' values, these two methods produce many different equations for the anomaly calculation of a single element. Current normalization practices based on shales and chondrites are suitable for abiotic samples but are questionable for biota. Indeed, normalization is increasingly used in studies addressing ecotoxicological issues which focus on biota and often aim to estimate the anthropogenic origin of bioaccumulated REEs. Due to the interspecific variability, as well as the complexity of mechanisms occurring in organisms when exposed to contaminants, new reference materials need to be established to consider the bioaccumulation/metabolization processes and the anthropogenic inputs of REEs based on the results of biotic samples.


Asunto(s)
Ecotoxicología , Metales de Tierras Raras , Monitoreo del Ambiente/métodos , Ecosistema , Australia , Metales de Tierras Raras/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA