Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Heliyon ; 9(11): e21519, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38027697

RESUMEN

The TGF-ß and Hippo pathways are critical for liver size control, regeneration, and cancer progression. The transcriptional cofactor TAZ, also named WWTR1, is a downstream effector of Hippo pathway and plays a key role in the maintenance of liver physiological functions. However, the up-regulation of TAZ expression has been associated with liver cancer progression. Recent evidence shows crosstalk of TGF-ß and Hippo pathways, since TGF-ß modulates TAZ expression through different mechanisms in a cellular context-dependent manner but supposedly independent of SMADs. Here, we evaluate the molecular interplay between TGF-ß pathway and TAZ expression and observe that TGF-ß induces TAZ expression through SMAD canonical pathway in liver cancer HepG2 cells. Therefore, TAZ cofactor is a primary target of TGF-ß/SMAD-signaling, one of the pathways altered in liver cancer.

2.
Front Bioeng Biotechnol ; 11: 1202126, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37485316

RESUMEN

The outbreak of COVID-19, a disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, is regarded as the most severe of the documented coronavirus pandemics. The measurement and monitoring of SARS-CoV-2 antibody levels by serological tests are relevant for a better epidemiological and clinical understanding of COVID-19. The aim of this work was to design a method called the SARS-CoV-2 antibody detection method (SARS-CoV-2 AbDM) for fluorescence immunodetection of anti-SARS-CoV-2 IgG and IgM on both plate and microfluidic chip. For this purpose, a system with magnetic beads that immobilize the antigen (S protein and RBD) on its surface was used to determine the presence and quantity of antibodies in a sample in a single reaction. The SARS-CoV-2 AbDM led to several advantages in the performance of the tests, such as reduced cost, possibility of performing isolated or multiple samples, potential of multiplex detection, and capacity to detect whole blood samples without losing resolution. In addition, due to the microfluidic chip in conjunction with the motorized actuated platform, the time, sample quantity, and operator intervention during the process were reduced. All these advantages suggest that the SARS-CoV-2 AbDM has the potential to be developed as a PoC that can be used as a tool for seroprevalence monitoring, allowing a better understanding of the epidemiological and clinical characteristics of COVID-19 and contributing to more effective and ethical decision-making in strategies to fight against the COVID-19 pandemic.

3.
Biosensors (Basel) ; 11(6)2021 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-34203685

RESUMEN

In spite of a current increasing trend in the development of miniaturized, standalone point-of-care (PoC) biosensing platforms in the literature, the actual implementation of such systems in the field is far from being a reality although deeply needed. In the particular case of the population screenings for local or regional diseases related to specific pathogens, the diagnosis of the presence of specific antibodies could drastically modify therapies and even the organization of public policies. The aim of this work was to develop a fast, cost-effective detection method based on the manipulation of functionalized magnetic beads for an efficient diagnosis of hypersensitivity pneumonitis (HP), looking for the presence of anti-pigeon antigen antibodies (APAA) in a patient's serum. We presented a Diagnostic Biosensor Method (DBM) in detail, with validation by comparison with a traditional high-throughput platform (ELISA assay). We also demonstrated that it was compatible with a microfluidic chip that could be eventually incorporated into a PoC for easy and broad deployment using portable optical detectors. After standardization of the different reaction steps, we constructed and validated a plastic chip that could easily be scaled to high-volume manufacturing in the future. The solution proved comparable to conventional ELISA assays traditionally performed by the clinicians in their laboratory and should be compatible with other antibody detection directly from patient samples.


Asunto(s)
Alveolitis Alérgica Extrínseca , Técnicas Biosensibles , Alveolitis Alérgica Extrínseca/diagnóstico , Anticuerpos , Ensayo de Inmunoadsorción Enzimática , Diseño de Equipo , Humanos , Separación Inmunomagnética , Dispositivos Laboratorio en un Chip , Microfluídica , Sistemas de Atención de Punto
4.
Artículo en Inglés | MEDLINE | ID: mdl-29892481

RESUMEN

The transforming growth factor-ß (TGF-ß) family plays major pleiotropic roles by regulating many physiological processes in development and tissue homeostasis. The TGF-ß signaling pathway outcome relies on the control of the spatial and temporal expression of >500 genes, which depend on the functions of the Smad protein along with those of diverse modulators of this signaling pathway, such as transcriptional factors and cofactors. Ski (Sloan-Kettering Institute) and SnoN (Ski novel) are Smad-interacting proteins that negatively regulate the TGF-ß signaling pathway by disrupting the formation of R-Smad/Smad4 complexes, as well as by inhibiting Smad association with the p300/CBP coactivators. The Ski and SnoN transcriptional cofactors recruit diverse corepressors and histone deacetylases to repress gene transcription. The TGF-ß/Smad pathway and coregulators Ski and SnoN clearly regulate each other through several positive and negative feedback mechanisms. Thus, these cross-regulatory processes finely modify the TGF-ß signaling outcome as they control the magnitude and duration of the TGF-ß signals. As a result, any alteration in these regulatory mechanisms may lead to disease development. Therefore, the design of targeted therapies to exert tight control of the levels of negative modulators of the TGF-ß pathway, such as Ski and SnoN, is critical to restore cell homeostasis under the specific pathological conditions in which these cofactors are deregulated, such as fibrosis and cancer.

5.
Biochim Biophys Acta ; 1850(9): 1832-41, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26002202

RESUMEN

BACKGROUND: Ski and SnoN proteins function as transcriptional co-repressors in the TGF-ß pathway. They regulate cell proliferation and differentiation, and their aberrant expression results in altered TGF-ß signalling, malignant transformation, and alterations in cell proliferation. METHODS: We carried out a comparative characterization of the endogenous Ski and SnoN protein regulation by TGF-ß, cell adhesion disruption and actin-cytoskeleton rearrangements between normal and transformed hepatocytes; we also analyzed Ski and SnoN protein stability, subcellular localization, and how their protein levels impact the TGF-ß/Smad-driven gene transcription. RESULTS: Ski and SnoN protein levels are lower in normal hepatocytes than in hepatoma cells. They exhibit a very short half-life and a nuclear/cytoplasmic distribution in normal hepatocytes opposed to a high stability and restricted nuclear localization in hepatoma cells. Interestingly, while normal cells exhibit a transient TGF-ß-induced gene expression, the hepatoma cells are characterized by a strong and sustained TGF-ß-induced gene expression. A novel finding is that Ski and SnoN stability is differentially regulated by cell adhesion and cytoskeleton rearrangements in the normal hepatocytes. The inhibition of protein turnover down-regulated both Ski and SnoN co-repressors impacting the kinetic of expression of TGF-ß-target genes. CONCLUSION: Normal regulatory mechanisms controlling Ski and SnoN stability, subcellular localization and expression are altered in hepatocarcinoma cells. GENERAL SIGNIFICANCE: This work provides evidence that Ski and SnoN protein regulation is far more complex in normal than in transformed cells, since many of the normal regulatory mechanisms are lost in transformed cells.


Asunto(s)
Actinas/química , Citoesqueleto/química , Proteínas de Unión al ADN/química , Hepatocitos/metabolismo , Péptidos y Proteínas de Señalización Intracelular/química , Proteínas Proto-Oncogénicas/química , Animales , Carcinoma Hepatocelular/metabolismo , Adhesión Celular , Línea Celular Tumoral , Proteínas de Unión al ADN/análisis , Proteínas de Unión al ADN/metabolismo , Péptidos y Proteínas de Señalización Intracelular/análisis , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Polimerizacion , Estabilidad Proteica , Proteínas Proto-Oncogénicas/análisis , Proteínas Proto-Oncogénicas/metabolismo , Ratas , Proteínas Smad/fisiología , Factor de Crecimiento Transformador beta/farmacología
6.
Biochim Biophys Acta ; 1830(11): 5049-58, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23872350

RESUMEN

BACKGROUND: SnoN and Ski proteins function as Smad transcriptional corepressors and are implicated in the regulation of diverse cellular processes such as proliferation, differentiation and transformation. Transforming growth factor-ß (TGF-ß) signaling causes SnoN and Ski protein degradation via proteasome with the participation of phosphorylated R-Smad proteins. Intriguingly, the antibiotics anisomycin (ANS) and puromycin (PURO) are also able to downregulate Ski and SnoN proteins via proteasome. METHODS: We explored the effects of ANS and PURO on SnoN protein downregulation when the activity of TGF-ß signaling was inhibited by using different pharmacological and non-pharmacological approaches, either by using specific TßRI inhibitors, overexpressing the inhibitory Smad7 protein, or knocking-down TßRI receptor or Smad2 by specific shRNAs. The outcome of SnoN and Ski downregulation induced by ANS or PURO on TGF-ß signaling was also studied. RESULTS: SnoN protein downregulation induced by ANS and PURO did not involve the induction of R-Smad phosphorylation but it was abrogated after TGF-ß signaling inhibition; this effect occurred in a cell type-specific manner and independently of protein synthesis inhibition or any other ribotoxic effect. Intriguingly, antibiotics seem to require components of the TGF-ß/Smad pathway to downregulate SnoN. In addition, SnoN protein downregulation induced by antibiotics favored gene transcription induced by TGF-ß signaling. CONCLUSIONS: ANS and PURO require TGF-ß/Smad pathway to induce SnoN and Ski protein downregulation independently of inducing R-Smad2 phosphorylation, which facilitates TGF-ß signaling. GENERAL SIGNIFICANCE: Antibiotic analogs lacking ribotoxic effects are useful as pharmacological tools to study TGF-ß signaling by controlling Ski and SnoN protein levels.


Asunto(s)
Anisomicina/farmacología , Proteínas Oncogénicas/metabolismo , Puromicina/farmacología , Factor de Crecimiento Transformador beta1/metabolismo , Animales , Línea Celular , Línea Celular Tumoral , Regulación hacia Abajo/efectos de los fármacos , Células HeLa , Células Hep G2 , Humanos , Visón/genética , Proteínas Oncogénicas/genética , Fosforilación/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Proteína Smad2/genética , Proteína Smad2/metabolismo , Proteína smad7/genética , Proteína smad7/metabolismo , Transcripción Genética/efectos de los fármacos , Factor de Crecimiento Transformador beta1/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA