Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Sci Rep ; 7(1): 16543, 2017 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-29185460

RESUMEN

Pluripotency can be induced in vitro from adult somatic mammalian cells by enforced expression of defined transcription factors regulating and initiating the pluripotency network. Despite the substantial advances over the last decade to improve the efficiency of direct reprogramming, exact mechanisms underlying the conversion into the pluripotent stem cell state are still vaguely understood. Several studies suggested that induced pluripotency follows reversed embryonic development. For somatic cells of mesodermal and endodermal origin that would require the transition through a Primitive streak-like state, which would necessarily require an Eomesodermin (Eomes) expressing intermediate. We analyzed reprogramming in human and mouse cells of mesodermal as well as ectodermal origin by thorough marker gene analyses in combination with genetic reporters, conditional loss of function and stable fate-labeling for the broad primitive streak marker Eomes. We unambiguously demonstrate that induced pluripotency is not dependent on a transient primitive streak-like stage and thus does not represent reversal of mesendodermal development in vivo.


Asunto(s)
Reprogramación Celular/genética , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/metabolismo , Línea Primitiva/citología , Línea Primitiva/metabolismo , Proteínas de Dominio T Box/metabolismo , Animales , Reprogramación Celular/fisiología , Ectodermo/citología , Ectodermo/metabolismo , Fibroblastos/citología , Fibroblastos/metabolismo , Humanos , Mesodermo/citología , Mesodermo/metabolismo , Ratones , Proteínas de Dominio T Box/genética
2.
Stem Cells Int ; 2016: 6759343, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26697078

RESUMEN

TBX3 is a member of the T-box transcription factor family and is involved in the core pluripotency network. Despite this role in the pluripotency network, its contribution to the reprogramming process during the generation of human induced pluripotent stem cells remains elusive. In this respect, we performed reprogramming experiments applying TBX3 knockdown in human fibroblasts and keratinocytes. Knockdown of TBX3 in both somatic cell types decreased the reprogramming efficiencies in comparison to control cells but with unchanged reprogramming kinetics. The resulting iPSCs were indistinguishable from control cells and displayed a normal in vitro differentiation capacity by generating cells of all three germ layers comparable to the controls.

3.
Stem Cell Reports ; 5(6): 1155-1170, 2015 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-26651606

RESUMEN

Pluripotency represents a cell state comprising a fine-tuned pattern of transcription factor activity required for embryonic stem cell (ESC) self-renewal. TBX3 is the earliest expressed member of the T-box transcription factor family and is involved in maintenance and induction of pluripotency. Hence, TBX3 is believed to be a key member of the pluripotency circuitry, with loss of TBX3 coinciding with loss of pluripotency. We report a dynamic expression of TBX3 in vitro and in vivo using genetic reporter tools tracking TBX3 expression in mouse ESCs (mESCs). Low TBX3 levels are associated with reduced pluripotency, resembling the more mature epiblast. Notably, TBX3-low cells maintain the intrinsic capability to switch to a TBX3-high state and vice versa. Additionally, we show TBX3 to be dispensable for induction and maintenance of naive pluripotency as well as for germ cell development. These data highlight novel facets of TBX3 action in mESCs.


Asunto(s)
Células Madre Embrionarias de Ratones/citología , Proteínas de Dominio T Box/metabolismo , Animales , Proliferación Celular , Células Cultivadas , Reprogramación Celular , Eliminación de Gen , Ratones , Células Madre Embrionarias de Ratones/metabolismo , Proteínas de Dominio T Box/análisis , Proteínas de Dominio T Box/genética
4.
Stem Cells Int ; 2014: 768391, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25431601

RESUMEN

The breakthrough of reprogramming human somatic cells was achieved in 2006 by the work of Yamanaka and Takahashi. From this point, fibroblasts are the most commonly used primary somatic cell type for the generation of induced pluripotent stem cells (iPSCs). Various characteristics of fibroblasts supported their utilization for the groundbreaking experiments of iPSC generation. One major advantage is the high availability of fibroblasts which can be easily isolated from skin biopsies. Furthermore, their cultivation, propagation, and cryoconservation properties are uncomplicated with respect to nutritional requirements and viability in culture. However, the required skin biopsy remains an invasive approach, representing a major drawback for using fibroblasts as the starting material. More and more studies appeared over the last years, describing the reprogramming of other human somatic cell types. Cells isolated from blood samples or urine, as well as more unexpected cell types, like pancreatic islet beta cells, synovial cells, or mesenchymal stromal cells from wisdom teeth, show promising characteristics for a reprogramming strategy. Here, we want to highlight the advantages of keratinocytes from human plucked hair as a widely usable, noninvasive harvesting method for primary material in comparison with other commonly used cell types.

5.
J Immunol ; 193(8): 4261-72, 2014 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-25217158

RESUMEN

The ability of NK cells to mediate Ab-dependent cellular cytotoxicity (ADCC) largely contributes to the clinical success of antitumor Abs, including trastuzumab, which is approved for the treatment of breast cancer with HER2/neu overexpression. Notably, only ∼25% of breast cancer patients overexpress HER2/neu. Moreover, HER2/neu is expressed on healthy cells, and trastuzumab application is associated with side effects. In contrast, the ligands of the activating immunoreceptor NKG2D (NKG2DL) are selectively expressed on malignant cells. In this study, we took advantage of the tumor-associated expression of NKG2DL by using them as target Ags for NKG2D-IgG1 fusion proteins optimized by amino acid exchange S239D/I332E in their Fc part. Compared to constructs with wild-type Fc parts, fusion proteins carrying the S239D/I332E modification (NKG2D-Fc-ADCC) mediated highly enhanced degranulation, ADCC, and IFN-γ production of NK cells in response to breast cancer cells. NKG2D-Fc-ADCC substantially enhanced NK reactivity also against HER2/neu-low targets that were unaffected by trastuzumab, as both compounds mediated their immunostimulatory effects in strict dependence of target Ag expression levels. Thus, in line with the hierarchically organized potential of the various activating receptors governing NK reactivity and due to its highly increased affinity to CD16, NKG2D-Fc-ADCC potently enhances NK cell reactivity despite the inevitable reduction of activating signals upon binding to NKG2DL. Due to the tumor-restricted expression of NKG2DL, NKG2D-Fc-ADCC may constitute an attractive means for immunotherapy especially of HER2/neu-low or -negative breast cancer.


Asunto(s)
Citotoxicidad Celular Dependiente de Anticuerpos/inmunología , Neoplasias de la Mama/inmunología , Fragmentos Fc de Inmunoglobulinas/inmunología , Células Asesinas Naturales/inmunología , Subfamilia K de Receptores Similares a Lectina de Células NK/inmunología , Anticuerpos Monoclonales Humanizados/farmacología , Citotoxicidad Inmunológica/inmunología , Femenino , Humanos , Fragmentos Fc de Inmunoglobulinas/genética , Inmunoterapia/métodos , Interferón gamma/inmunología , Subfamilia K de Receptores Similares a Lectina de Células NK/genética , Receptor ErbB-2/biosíntesis , Receptores de IgG/genética , Receptores de IgG/inmunología , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/inmunología , Trastuzumab
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA