Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Hemasphere ; 8(6): e109, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38919958

RESUMEN

Mitapivat is an investigational, oral, small-molecule allosteric activator of pyruvate kinase (PK). PK is a regulatory glycolytic enzyme that is key in providing the red blood cell (RBC) with sufficient amounts of adenosine triphosphate (ATP). In sickle cell disease (SCD), decreased 2,3-DPG levels increase the oxygen affinity of hemoglobin, thereby preventing deoxygenation and polymerization of sickle hemoglobin. The PK activator mitapivat has been shown to decrease levels of 2,3-DPG and increase levels of ATP in RBCs in patients with SCD. In this phase 2, investigator-initiated, open-label study (https://www.clinicaltrialsregister.eu/ NL8517; EudraCT 2019-003438-18), untargeted metabolomics was used to explore the overall metabolic effects of 8-week treatment with mitapivat in the dose-finding period. In total, 1773 unique metabolites were identified in dried blood spots of whole blood from ten patients with SCD and 42 healthy controls (HCs). The metabolic phenotype of patients with SCD revealed alterations in 139/1773 (7.8%) metabolites at baseline when compared to HCs (false discovery rate-adjusted p < 0.05), including increases of (derivatives of) polyamines, purines, and acyl carnitines. Eight-week treatment with mitapivat in nine patients with SCD altered 85/1773 (4.8%) of the total metabolites and 18/139 (12.9%) of the previously identified altered metabolites in SCD (unadjusted p < 0.05). Effects were observed on a broad spectrum of metabolites and were not limited to glycolytic intermediates. Our results show the relevance of metabolic profiling in SCD, not only to unravel potential pathophysiological pathways and biomarkers in multisystem diseases but also to determine the effect of treatment.

2.
Br J Haematol ; 204(5): 2040-2048, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38415930

RESUMEN

The hexokinase (HK) enzyme plays a key role in red blood cell energy production. Hereditary non-spherocytic haemolytic anaemia (HNSHA) caused by HK deficiency is a rare disorder with only 12 different disease-associated variants identified. Here, we describe the clinical features and genotypes of four previously unreported patients with hexokinase 1 (HK1)-related HNSHA, yielding two novel truncating HK1 variants. The patients' phenotypes varied from mild chronic haemolytic anaemia to severe infantile-onset transfusion-dependent anaemia. Three of the patients had mild haemolytic disease caused by the common HK1 promoter c.-193A>G variant combined with an intragenic HK1 variant, emphasizing the importance of including this promoter variant in the haemolytic disease gene panels. HK activity was normal in a severely affected patient with a homozygous HK1 c.2599C>T, p.(His867Tyr) variant, but the affinity for ATP was reduced, hampering the HK function. In cases of HNSHA, kinetic studies should be considered in the functional studies of HK. We reviewed the literature of previously published patients to provide better insight into this rare disease and add to the understanding of genotype-phenotype correlation.


Asunto(s)
Anemia Hemolítica Congénita no Esferocítica , Hexoquinasa , Regiones Promotoras Genéticas , Humanos , Hexoquinasa/genética , Hexoquinasa/deficiencia , Femenino , Masculino , Anemia Hemolítica Congénita no Esferocítica/genética , Lactante , Alelos , Preescolar , Fenotipo , Niño , Genotipo
3.
EJHaem ; 5(1): 21-32, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38406513

RESUMEN

The most common forms of sickle cell disease (SCD) are sickle cell anemia (SCA; HbSS) and HbSC disease. In both, especially the more dense, dehydrated and adherent red blood cells (RBCs) with reduced deformability are prone to hemolysis and sickling, and thereby vaso-occlusion. Based on plasma amino acid profiling in SCD, a composition of 10 amino acids and derivatives (RCitNacQCarLKHVS; Axcella Therapeutics, USA), referred to as endogenous metabolic modulators (EMMs), was designed to target RBC metabolism. The effects of ex vivo treatment with the EMM composition on different RBC properties were studied in SCD (n = 9 SCA, n = 5 HbSC disease). Dose-dependent improvements were observed in RBC hydration assessed by hemocytometry (MCV, MCHC, dense RBCs) and osmotic gradient ektacytometry (Ohyper). Median (interquartile range [IQR]) increase in Ohyper compared to vehicle was 4.9% (4.0%-5.5%), 7.5% (6.9%-9.4%), and 12.8% (11.5%-14.0%) with increasing 20×, 40×, and 80X concentrations, respectively (all p < 0.0001). RBC deformability (EImax using oxygen gradient ektacytometry) increased by 8.1% (2.2%-12.1%; p = 0.0012), 9.6% (2.9%-15.1%; p = 0.0013), and 13.3% (5.7%-25.5%; p = 0.0007), respectively. Besides, RBC adhesion to subendothelial laminin decreased by 43% (6%-68%; p = 0.4324), 58% (48%-72%; p = 0.0185), and 71% (49%-82%; p = 0.0016), respectively. Together, these results provide a rationale for further studies with the EMM composition targeting multiple RBC properties in SCD.

5.
Blood Adv ; 8(2): 276-286, 2024 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-37976458

RESUMEN

ABSTRACT: We investigated the potential of the point of sickling (PoS; the pO2 tension at which red cells start to sickle), determined by oxygen gradient ektacytometry to serve as a biomarker associated with the incidence of acute sickle cell disease-related complications in 177 children and 50 adults. In the pediatric cohort, for every 10 mmHg increase in PoS reflecting a greater likelihood of sickling, the likelihood of an individual experiencing >1 type of acute complication increased; the adjusted odds ratio (aOR) was 1.65. For every 0.1 increase in minimum elongation index (EImin; reflecting improved red blood cell deformability at hypoxia), the aOR was 0.50. In the adult cohort, for every 10 mmHg increase in PoS, we found an aOR of 3.00, although this was not significant after correcting for multiple testing. There was a trend for an association between higher PoS and greater likelihood of vaso-occlusive episodes (VOEs; children aOR, 1.35; adults aOR, 2.22). In children, only EImin was associated with VOEs (aOR, 0.68). When data of both cohorts were pooled, significant associations with PoS and/or EImin were found for all acute complications, independently and when >1 type of acute complication was assessed. These findings indicate that oxygen gradient ektacytometry generates novel biomarkers and provides a rationale for further development of these biomarkers in the assessment of clinical severity, evaluation of novel therapies, and as surrogate clinical trial end points. These biomarkers may be useful in assessing efficacy of novel therapies like pyruvate kinase activators, voxelotor, and L-glutamine.


Asunto(s)
Anemia de Células Falciformes , Oxígeno , Adulto , Humanos , Niño , Oxígeno/metabolismo , Eritrocitos/metabolismo , Eritrocitos Anormales/metabolismo , Biomarcadores/metabolismo
7.
Blood Adv ; 7(24): 7539-7550, 2023 12 26.
Artículo en Inglés | MEDLINE | ID: mdl-37934880

RESUMEN

Targeting the primary pathogenic event of sickle cell disease (SCD), the polymerization of sickle hemoglobin (HbS), may prevent downstream clinical events. Mitapivat, an oral pyruvate kinase (PK) activator, has therapeutic potential by increasing adenosine triphosphate (ATP) and decreasing 2,3-diphosphoglycerate (2,3-DPG), a glycolytic red blood cell (RBC) intermediate. In the previously reported 8-week dose-finding period of this phase 2, investigator-initiated, open-label study, mitapivat was well tolerated and showed efficacy in SCD. Here, the 1-year fixed-dose extension period is reported in which 9 of 10 included patients (90%) aged ≥16 years with SCD (HbSS, HbS/ß0, or HbS/ß+) continued with mitapivat. Mostly mild treatment-emergent adverse events (AEs) (most commonly, transaminase increase and headache) were still reported. Apart from the reported nontreatment-related serious AE (SAE) of a urinary tract infection in the dose-finding period, 1 nontreatment-related SAE occurred in the fixed-dose extension period in a patient who died of massive pulmonary embolism due to COVID-19. Importantly, sustained improvement in Hb level (mean increase, 1.1 ± 0.7 g/dL; P = .0014) was seen, which was accompanied by decreases in markers of hemolysis. In addition, the annualized rate of vaso-occlusive events reduced significantly from a historic baseline of 1.33 ± 1.32 to 0.64 ± 0.87 (P = .0489) when combining the dose-finding period and fixed-dose extension period. Cellularly, the ATP:2,3-DPG ratio and Hb-oxygen affinity significantly increased and RBC sickling (point of sickling) nonsignificantly reduced. Overall, this study demonstrated 1-year safety and efficacy of treatment with mitapivat in SCD, supporting further evaluation in ongoing phase 2/3 study (RISE UP, NCT05031780). This trial was registered at https://www.clinicaltrialsregister.eu/ as NL8517 and EudraCT 2019-003438-18.


Asunto(s)
Anemia de Células Falciformes , Humanos , 2,3-Difosfoglicerato , Adenosina Trifosfato , Anemia de Células Falciformes/complicaciones , Estudios de Seguimiento , Hemoglobina Falciforme , Adolescente , Adulto
8.
Am J Hematol ; 98(12): 1877-1887, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37671681

RESUMEN

Adenosine Triphosphatase (ATPase) Phospholipid Transporting 11C gene (ATP11C) encodes the major phosphatidylserine (PS) flippase in human red blood cells (RBCs). Flippases actively transport phospholipids (e.g., PS) from the outer to the inner leaflet to establish and maintain phospholipid asymmetry of the lipid bilayer of cell membranes. This asymmetry is crucial for survival since externalized PS triggers phagocytosis by splenic macrophages. Here we report on pathophysiological consequences of decreased flippase activity, prompted by a patient with hemolytic anemia and hemizygosity for a novel c.2365C > T p.(Leu789Phe) missense variant in ATP11C. ATP11C protein expression was strongly reduced by 58% in patient-derived RBC ghosts. Furthermore, functional characterization showed only 26% PS flippase activity. These results were confirmed by recombinant mutant ATP11C protein expression in HEK293T cells, which was decreased to 27% compared to wild type, whereas PS-stimulated ATPase activity was decreased by 57%. Patient RBCs showed a mild increase in PS surface exposure when compared to control RBCs, which further increased in the most dense RBCs after RBC storage stress. The increase in PS was not due to higher global membrane content of PS or other phospholipids. In contrast, membrane lipid lateral distribution showed increased abundance of cholesterol-enriched domains in RBC low curvature areas. Finally, more dense RBCs and subtle changes in RBC morphology under flow hint toward alterations in flow behavior of ATP11C-deficient RBCs. Altogether, ATP11C deficiency is the likely cause of hemolytic anemia in our patient, thereby underlining the physiological role and relevance of this flippase in human RBCs.


Asunto(s)
Anemia Hemolítica Congénita , Fosfatidilserinas , Humanos , Fosfatidilserinas/metabolismo , Células HEK293 , Eritrocitos/metabolismo , Anemia Hemolítica Congénita/genética , Anemia Hemolítica Congénita/metabolismo , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , Fosfolípidos/metabolismo , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo
9.
Haematologica ; 108(11): 3068-3085, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37317877

RESUMEN

Hereditary erythrocytosis is a rare hematologic disorder characterized by an excess of red blood cell production. Here we describe a European collaborative study involving a collection of 2,160 patients with erythrocytosis sequenced in ten different laboratories. We focused our study on the EGLN1 gene and identified 39 germline missense variants including one gene deletion in 47 probands. EGLN1 encodes the PHD2 prolyl 4-hydroxylase, a major inhibitor of hypoxia-inducible factor. We performed a comprehensive study to evaluate the causal role of the identified PHD2 variants: (i) in silico studies of localization, conservation, and deleterious effects; (ii) analysis of hematologic parameters of carriers identified in the UK Biobank; (iii) functional studies of the protein activity and stability; and (iv) a comprehensive study of PHD2 splicing. Altogether, these studies allowed the classification of 16 pathogenic or likely pathogenic mutants in a total of 48 patients and relatives. The in silico studies extended to the variants described in the literature showed that a minority of PHD2 variants can be classified as pathogenic (36/96), without any differences from the variants of unknown significance regarding the severity of the developed disease (hematologic parameters and complications). Here, we demonstrated the great value of federating laboratories working on such rare disorders in order to implement the criteria required for genetic classification, a strategy that should be extended to all hereditary hematologic diseases.


Asunto(s)
Policitemia , Humanos , Policitemia/diagnóstico , Policitemia/genética , Policitemia/metabolismo , Prolina Dioxigenasas del Factor Inducible por Hipoxia/genética , Prolina Dioxigenasas del Factor Inducible por Hipoxia/metabolismo , Mutación de Línea Germinal , Secuencia de Bases
10.
Cells ; 12(11)2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37296651

RESUMEN

Blood flow in the microcirculatory system is crucially affected by intrinsic red blood cell (RBC) properties, such as their deformability. In the smallest vessels of this network, RBCs adapt their shapes to the flow conditions. Although it is known that the age of RBCs modifies their physical properties, such as increased cytosol viscosity and altered viscoelastic membrane properties, the evolution of their shape-adapting abilities during senescence remains unclear. In this study, we investigated the effect of RBC properties on the microcapillary in vitro flow behavior and their characteristic shapes in microfluidic channels. For this, we fractioned RBCs from healthy donors according to their age. Moreover, the membranes of fresh RBCs were chemically rigidified using diamide to study the effect of isolated graded-membrane rigidity. Our results show that a fraction of stable, asymmetric, off-centered slipper-like cells at high velocities decreases with increasing age or diamide concentration. However, while old cells form an enhanced number of stable symmetric croissants at the channel centerline, this shape class is suppressed for purely rigidified cells with diamide. Our study provides further knowledge about the distinct effects of age-related changes of intrinsic cell properties on the single-cell flow behavior of RBCs in confined flows due to inter-cellular age-related cell heterogeneity.


Asunto(s)
Diamida , Deformación Eritrocítica , Deformación Eritrocítica/fisiología , Microcirculación , Diamida/farmacología , Eritrocitos , Microfluídica
11.
Blood Rev ; 61: 101103, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37353463

RESUMEN

Novel developments in therapies for various hereditary hemolytic anemias reflect the pivotal role of pyruvate kinase (PK), a key enzyme of glycolysis, in red blood cell (RBC) health. Without PK catalyzing one of the final steps of the Embden-Meyerhof pathway, there is no net yield of adenosine triphosphate (ATP) during glycolysis, the sole source of energy production required for proper RBC function and survival. In hereditary hemolytic anemias, RBC health is compromised and therefore lifespan is shortened. Although our knowledge on glycolysis in general and PK function in particular is solid, recent advances in genetic, molecular, biochemical, and metabolic aspects of hereditary anemias have improved our understanding of these diseases. These advances provide a rationale for targeting PK as therapeutic option in hereditary hemolytic anemias other than PK deficiency. This review summarizes the knowledge, rationale, (pre)clinical trials, and future advances of PK activators for this important group of rare diseases.


Asunto(s)
Anemia Hemolítica Congénita no Esferocítica , Anemia Hemolítica Congénita , Anemia Hemolítica , Humanos , Piruvato Quinasa/genética , Piruvato Quinasa/metabolismo , Anemia Hemolítica/metabolismo , Anemia Hemolítica Congénita no Esferocítica/etiología , Anemia Hemolítica Congénita no Esferocítica/terapia , Eritrocitos/metabolismo , Anemia Hemolítica Congénita/terapia , Anemia Hemolítica Congénita/metabolismo
12.
Haematologica ; 108(6): 1652-1666, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-36700397

RESUMEN

Gain-of-function mutations in the EPAS1/HIF2A gene have been identified in patients with hereditary erythrocytosis that can be associated with the development of paraganglioma, pheochromocytoma and somatostatinoma. In the present study, we describe a unique European collection of 41 patients and 28 relatives diagnosed with an erythrocytosis associated with a germline genetic variant in EPAS1. In addition we identified two infants with severe erythrocytosis associated with a mosaic mutation present in less than 2% of the blood, one of whom later developed a paraganglioma. The aim of this study was to determine the causal role of these genetic variants, to establish pathogenicity, and to identify potential candidates eligible for the new hypoxia-inducible factor-2 α (HIF-2α) inhibitor treatment. Pathogenicity was predicted with in silico tools and the impact of 13 HIF-2b variants has been studied by using canonical and real-time reporter luciferase assays. These functional assays consisted of a novel edited vector containing an expanded region of the erythropoietin promoter combined with distal regulatory elements which substantially enhanced the HIF-2α-dependent induction. Altogether, our studies allowed the classification of 11 mutations as pathogenic in 17 patients and 23 relatives. We described four new mutations (D525G, L526F, G527K, A530S) close to the key proline P531, which broadens the spectrum of mutations involved in erythrocytosis. Notably, we identified patients with only erythrocytosis associated with germline mutations A530S and Y532C previously identified at somatic state in tumors, thereby raising the complexity of the genotype/phenotype correlations. Altogether, this study allows accurate clinical follow-up of patients and opens the possibility of benefiting from HIF-2α inhibitor treatment, so far the only targeted treatment in hypoxia-related erythrocytosis disease.


Asunto(s)
Paraganglioma , Policitemia , Humanos , Policitemia/diagnóstico , Policitemia/genética , Mutación , Paraganglioma/complicaciones , Paraganglioma/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Hipoxia
15.
Sci Rep ; 11(1): 24045, 2021 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-34911982

RESUMEN

As a lymphoid organ, the spleen hosts a wide range of immune cell populations, which not only remove blood-borne antigens, but also generate and regulate antigen-specific immune responses. In particular, the splenic microenvironment has been demonstrated to play a prominent role in adaptive immune responses to enveloped viral infections and alloantigens. During both types of immunizations, antigen-specific immunoglobulins G (IgGs) have been characterized by the reduced amount of fucose present on N-linked glycans of the fragment crystallizable (Fc) region. These glycans are essential for mediating the induction of immune effector functions. Therefore, we hypothesized that a spleen may modulate humoral responses and serve as a preferential site for afucosylated IgG responses, which potentially play a role in immune thrombocytopenia (ITP) pathogenesis. To determine the role of the spleen in IgG-Fc glycosylation, we performed IgG subclass-specific liquid chromatography-mass spectrometry (LC-MS) analysis of Fc glycosylation in a large cohort of individuals splenectomized due to trauma, due to ITP, or spherocytosis. IgG-Fc fucosylation was consistently increased after splenectomy, while no effects for IgG-Fc galactosylation and sialylation were observed. An increase in IgG1- and IgG2/3-Fc fucosylation level upon splenectomy has been reported here for the first time, suggesting that immune responses occurring in the spleen may be particularly prone to generate afucosylated IgG responses. Surprisingly, the level of total IgG-Fc fucosylation was decreased in ITP patients compared to healthy controls. Overall, our results suggest a yet unrecognized role of the spleen in either the induction or maintenance of afucosylated IgG responses by B cells.


Asunto(s)
Inmunoglobulina G/inmunología , Bazo/inmunología , Adolescente , Adulto , Especificidad de Anticuerpos/inmunología , Antígenos/inmunología , Estudios de Casos y Controles , Niño , Femenino , Fucosa/metabolismo , Glicosilación , Interacciones Huésped-Patógeno/inmunología , Humanos , Enfermedades del Sistema Inmune/diagnóstico , Enfermedades del Sistema Inmune/etiología , Enfermedades del Sistema Inmune/metabolismo , Enfermedades del Sistema Inmune/terapia , Fragmentos Fc de Inmunoglobulinas/inmunología , Fragmentos Fc de Inmunoglobulinas/metabolismo , Inmunoglobulina G/metabolismo , Masculino , Espectrometría de Masas , Persona de Mediana Edad , Púrpura Trombocitopénica Idiopática/diagnóstico , Púrpura Trombocitopénica Idiopática/etiología , Púrpura Trombocitopénica Idiopática/metabolismo , Púrpura Trombocitopénica Idiopática/terapia , Bazo/metabolismo , Esplenectomía , Adulto Joven
16.
Br J Haematol ; 195(4): 629-633, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34396507

RESUMEN

The present study tested the impact of α-thalassaemia on oxygen gradient ektacytometry in sickle cell anaemia (SCA). Three SCA groups were compared: (i) no α-thalassaemia (four α-genes, n = 62), (ii) silent α-thalassaemia (three α-genes, n = 35) and (iii) homozygous α-thalassaemia (two α-genes, n = 12). Red blood cell (RBC) deformability measured in normoxia was not different between the three groups. The lowest RBC deformability reached at low oxygen partial pressure (pO2 ) was greater and the pO2 at which RBC started to sickle was lower in the two α-genes group compared to the other groups. Our present study showed an effect of α-thalassaemia on oxygen gradient ektacytometry in SCA.


Asunto(s)
Anemia de Células Falciformes/sangre , Deformación Eritrocítica , Oxígeno/sangre , Talasemia alfa/sangre , Adolescente , Adulto , Anemia de Células Falciformes/complicaciones , Anemia de Células Falciformes/genética , Niño , Preescolar , Índices de Eritrocitos , Genotipo , Humanos , Presión Osmótica , Resistencia al Corte , Adulto Joven , Globinas alfa/genética , Talasemia alfa/complicaciones , Talasemia alfa/genética , Globinas beta/genética
18.
Cells ; 10(4)2021 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-33916502

RESUMEN

(1) Background: The aim of the present study was to compare oxygen gradient ektacytometry parameters between sickle cell patients of different genotypes (SS, SC, and S/ß+) or under different treatments (hydroxyurea or chronic red blood cell exchange). (2) Methods: Oxygen gradient ektacytometry was performed in 167 adults and children at steady state. In addition, five SS patients had oxygenscan measurements at steady state and during an acute complication requiring hospitalization. (3) Results: Red blood cell (RBC) deformability upon deoxygenation (EImin) and in normoxia (EImax) was increased, and the susceptibility of RBC to sickle upon deoxygenation was decreased in SC patients when compared to untreated SS patients older than 5 years old. SS patients under chronic red blood cell exchange had higher EImin and EImax and lower susceptibility of RBC to sickle upon deoxygenation compared to untreated SS patients, SS patients younger than 5 years old, and hydroxyurea-treated SS and SC patients. The susceptibility of RBC to sickle upon deoxygenation was increased in the five SS patients during acute complication compared to steady state, although the difference between steady state and acute complication was variable from one patient to another. (4) Conclusions: The present study demonstrates that oxygen gradient ektacytometry parameters are affected by sickle cell disease (SCD) genotype and treatment.


Asunto(s)
Anemia de Células Falciformes/genética , Anemia de Células Falciformes/terapia , Oxígeno/metabolismo , Adulto , Anemia de Células Falciformes/complicaciones , Agregación Celular , Preescolar , Eritrocitos/patología , Femenino , Genotipo , Hospitalización , Humanos , Masculino , Adulto Joven
20.
Front Physiol ; 12: 638027, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33708142

RESUMEN

Familial hypobetalipoproteinemia is a metabolic disorder mainly caused by mutations in the apolipoprotein B gene. In its homozygous form it can lead without treatment to severe ophthalmological and neurological manifestations. In contrast, the heterozygous form is generally asymptomatic but associated with a low risk of cardiovascular disease. Acanthocytes or thorny red blood cells (RBCs) are described for both forms of the disease. However, those morphological changes are poorly characterized and their potential consequences for RBC functionality are not understood. Thus, in the present study, we asked whether, to what extent and how acanthocytes from a patient with heterozygous familial hypobetalipoproteinemia could exhibit altered RBC functionality. Acanthocytes represented 50% of the total RBC population and contained mitoTracker-positive surface patches, indicating the presence of mitochondrial fragments. While RBC osmotic fragility, calcium content and ATP homeostasis were preserved, a slight decrease of RBC deformability combined with an increase of intracellular free reactive oxygen species were observed. The spectrin cytoskeleton was altered, showing a lower density and an enrichment in patches. At the membrane level, no obvious modification of the RBC membrane fatty acids nor of the cholesterol content were detected but the ceramide species were all increased. Membrane stiffness and curvature were also increased whereas transversal asymmetry was preserved. In contrast, lateral asymmetry was highly impaired showing: (i) increased abundance and decreased functionality of sphingomyelin-enriched domains; (ii) cholesterol enrichment in spicules; and (iii) ceramide enrichment in patches. We propose that oxidative stress induces cytoskeletal alterations, leading to increased membrane stiffness and curvature and impaired lipid lateral distribution in domains and spicules. In addition, ceramide- and spectrin-enriched patches could result from a RBC maturation defect. Altogether, the data indicate that acanthocytes are associated with cytoskeletal and membrane lipid lateral asymmetry alterations, while deformability is only mildly impaired. In addition, familial hypobetalipoproteinemia might also affect RBC precursors leading to disturbed RBC maturation. This study paves the way for the potential use of membrane biophysics and lipid vital imaging as new methods for diagnosis of RBC disorders.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA