Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Sci Rep ; 13(1): 8580, 2023 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-37237037

RESUMEN

In this research, the one-step synthesis of novel porphyrin-based nanocomposites was performed easily using a photochemical under visible light illumination strategy. As a result, the focus of this research is on synthesizing and using decorated ZnTPP (zinc(II)tetrakis(4-phenyl)porphyrin) nanoparticles with Ag, Ag/AgCl/Cu, and Au/Ag/AgCl nanostructures as antibacterial agents. Initially, ZnTPP NPs were synthesized as a result of the self-assembly of ZnTPP. In the next step, in a visible-light irradiation photochemically process, the self-assembled ZnTPP nanoparticles were used to make ZnTPP/Ag NCs, ZnTPP/Ag/AgCl/Cu NCs, and ZnTPP/Au/Ag/AgCl NCs. A study on the antibacterial activity of nanocomposites was carried out for Escherichia coli, and Staphylococcus aureus as pathogen microorganisms by the plate count method, well diffusion tests, minimum inhibitory concentration (MIC), and minimum bactericidal concentration (MBC) values determination. Thereafter, the reactive oxygen species (ROS) were determined by the flow cytometry method. All the antibacterial tests and the flow cytometry ROS measurements were carried out under LED light and in dark. The (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was applied to investigate the cytotoxicity of the ZnTPP/Ag/AgCl/Cu NCs, against Human foreskin fibroblast (HFF-1) normal cells. Due to the specific properties such as admissible photosensitizing properties of porphyrin, mild reaction conditions, high antibacterial properties in the presence of LED light, crystal structure, and green synthesis, these nanocomposites were recognized as kinds of antibacterial materials that are activated in visible light, got the potential for use in a broad range of medical applications, photodynamic therapy, and water treatment.


Asunto(s)
Nanopartículas del Metal , Nanocompuestos , Humanos , Especies Reactivas de Oxígeno , Nanocompuestos/química , Fotosíntesis , Escherichia coli , Antibacterianos/farmacología , Antibacterianos/química , Nanopartículas del Metal/química
2.
Environ Sci Pollut Res Int ; 30(15): 43714-43725, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36662432

RESUMEN

Herein, a highly porous bimetal-organic framework (bi-MOF) based on cobalt and nickel was successfully in situ grown on organoclay (OC) clusters by solvothermal method. Accordingly, the hierarchical porous CoNi-MOF/OC composite with a superior specific surface area of 2046 m2/g and a large pore volume of 0.763 cm3/g was obtained, which facilitated the adsorption of organic dyes. A morphological study using scanning electron microscopy indicated the formation of uniform bi-MOF crystals on the OC plates. Furthermore, the single- and multi-dye adsorption assays were implemented to precisely evaluate the adsorption capacity and selectivity of CoNi-MOF/OC composite to anionic and cationic dyes. The results revealed a high adsorption capacity of 58.61 mg/g at an adsorbent content of 15 mg, initial dye concentration of 20 ppm, and contact time of 25 min for MB, which is superior to several existing clay-based adsorbents. The adsorption kinetics study showed that the adsorption of cationic and anionic dyes onto the CoNi-MOF/OC composite followed the pseudo-second-order kinetic model. Interestingly, the regeneration study showed appropriate reusability and stability of the CoNi-MOF/OC composite for the removal of organic dyes with an almost unchanged structure after four regeneration cycles. The results of this study provide new insights for the rational design and fabrication of next-generation clay-based adsorbent by combining the synergistic advantages of bi-MOF with superior specific surface area and pore volume with organoclay composition and structure.


Asunto(s)
Caracol Conus , Contaminantes Químicos del Agua , Animales , Arcilla , Adsorción , Porosidad , Contaminantes Químicos del Agua/análisis , Colorantes/química
3.
Sci Rep ; 12(1): 17121, 2022 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-36224275

RESUMEN

This study focuses on synthesizing novel nanocomposites, zinc(II)tetrakis(4-phenyl)porphyrin/Cu nanoparticles (ZnTPP/Cu-NPs),with antibacterial activity, fabricated through a single-step green procedure. In this regard, the self-assembly of ZnTPP was carried out through an acid-base neutralization method to prepare ZnTPP nanoparticles. Then, the copper nanoparticles (Cu-NPs) were grown on ZnTPP nanoparticles through a visible-light irradiated photochemical procedure in the absence and presence of polyacrylic acid (PAA) as a modulator. The effect of PAA on the morphological properties of the prepared nanocomposites was evaluated. Eventually, the antibacterial activity of nanocomposites with different morphologies was investigated. In this way, the average zone of inhibition growth of diameter, minimum inhibitory concentration, and minimum bactericidal concentration values was determined. Besides, the cytotoxicity of the nanocomposites was evaluated by (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay MCF-7and (HEK-293) cell lines. The specific features of the synthesized nanocomposites identified them as antibacterial compounds which have therapeutic effects on breast cancer.


Asunto(s)
Antineoplásicos , Neoplasias de la Mama , Nanopartículas del Metal , Nanocompuestos , Porfirinas , Antibacterianos/química , Neoplasias de la Mama/tratamiento farmacológico , Cobre/química , Femenino , Células HEK293 , Humanos , Nanopartículas del Metal/química , Metaloporfirinas , Nanocompuestos/química , Porfirinas/farmacología , Zinc
4.
ACS Appl Mater Interfaces ; 14(39): 44488-44497, 2022 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-36153953

RESUMEN

Metal-organic frameworks (MOFs) are well-known porous crystalline materials that have been used for the removal of organic pollutants from wastewater. To enhance the adsorption performance of these adsorbents and facilitate their recycling process, we propose a hybrid composite of an MXene/metal-organic framework (MXOF) decorated on a hierarchical and self-supported porous three-dimensional (3D) printed lattice structure (3D-MXOF). In this design, the porous MXOF composite extremely enhanced the specific surface area and synergistically promoted the dye removal efficiency of 3D-printed lattices. Scanning electron microscopy images indicated that the MXOF composite was uniformly decorated on a 3D-printed lattice structure without agglomeration. The resultant supported 3D-MXOF structures were evaluated for the adsorption of anionic dyes. The results revealed high adsorption performance (91.98% for methyl orange and 84.9% for direct red 31 dyes) and fast adsorption kinetics following a pseudo-first-order kinetic model. Moreover, the 3D-MXOF structure possesses a facile recycling process with sustainable adsorption performance after four consecutive adsorption-desorption cycles.

5.
Water Sci Technol ; 84(7): 1813-1825, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34662315

RESUMEN

In this study, zinc oxide and silver and copper-doped zinc oxide nanorods were synthesized by a simple template-free precipitation technique. In addition, meso-tetrakis-(4-sulfonatophenyl) porphyrin (TPPS4) was prepared and immobilized on ZnO nanorods (TPPS/ZnO). The synthesized photocatalysts were characterized by various techniques such as X-ray powder diffraction, scanning electron microscopy, UV-visible spectroscopy, diffuse reflectance spectroscopy, and Fourier transform Infrared spectroscopy. The potential of the obtained photocatalysts in the degradation of methylene blue was investigated under UV and visible light irradiation. The results revealed that the photocatalytic activity of TPPS/ZnO was higher than those of the pure ZnO and doped ZnO under visible light irradiation.


Asunto(s)
Óxido de Zinc , Catálisis , Luz , Azul de Metileno , Porfirinas
6.
Environ Sci Pollut Res Int ; 28(44): 62474-62486, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34195949

RESUMEN

In this study, a magnetic metal-organic framework (MMOF) was synthesized and post-modified with poly(propyleneimine) dendrimer to fabricate a novel functional porous nanocomposite for adsorption and recovery of palladium (Pd(II)) from aqueous solution. The morphological and structural characteristics of the prepared material were identified by field emission scanning electron microscopy (FESEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Brunauer-Emmet-Teller (BET) isotherm, and vibrating sample magnetometer (VSM). The results confirmed the successful synthesis and post-modification of MMOF. Semispherical shape particles (20-50 nm) with appropriate magnetic properties and a high specific surface area of 120 m2/g were obtained. An experimental design approach was performed to show the effect of adsorption conditions on Pd(II) uptake efficiency of the dendrimer-modified magnetic adsorbent. The study showed that the Pd(II) uptake on dendrimer-modified MMOF was well described by the Langmuir isotherm model with the highest uptake capacity of 291 mg/g under optimal condition (adsorbent content of 12.5 mg, Pd ion concentration of 80 ppm, pH = 4, and contact time of 40 min). The adsorption kinetics of Pd(II) ions was suggested to be a pseudo-first-order model. The results revealed a faster adsorption rate and higher adsorption capacity (about 43%) for dendrimer-modified MMOF. Finally, the reusability of the provided adsorbent was evaluated. This work provides a valuable strategy for designing and developing efficient magnetic adsorbents based on MOFs for the adsorption and recovery of precious metals.


Asunto(s)
Dendrímeros , Estructuras Metalorgánicas , Nanocompuestos , Contaminantes Químicos del Agua , Adsorción , Cinética , Fenómenos Magnéticos , Paladio , Polipropilenos , Proyectos de Investigación , Espectroscopía Infrarroja por Transformada de Fourier , Contaminantes Químicos del Agua/análisis
7.
J Environ Health Sci Eng ; 19(1): 133-142, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34150224

RESUMEN

In this study, zinc oxide nanorods, co-doped with iron and silver, were synthesized in a co-precipitation method. Its properties were determined using X-ray diffraction (XRD), Transmission electron microscopy (TEM), Field Emission Scanning Electron Microscopy (FE-SEM), Brunauer-Emmett-Teller (BET), Dynamic light scattering (DLS) and X-ray photoelectron spectroscopy (XPS) analysis. The results of FE-SEM and TEM showed that zinc oxide nanoparticles synthesized and co-doped with iron and silver were formed as separate nanorods. Also, the average values of DBP and DEHP amount of phthalates in the leachate from the landfill site of Aradkouh were obtained 52.5 and 94.69 mg/L, respectively. The highest removal efficiency in real samples for phthalates was found to be 52%. The highest removal efficiency of TOC were was 61%. The synthesized nanostructure could have proper efficiency in removal of phthalates from water sources under the visible light of LED lamp.

8.
ACS Appl Mater Interfaces ; 12(22): 25294-25303, 2020 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-32400154

RESUMEN

Herein, a magnetic zirconium-based metal-organic framework nanocomposite was synthesized by a simple solvothermal method and used as an adsorbent for the removal of direct and acid dyes from aqueous solution. To enhance its adsorption performance, poly(propyleneimine) dendrimer was used to functionalize the as-synthesized magnetic porous nanocomposite. The dendrimer-functionalized magnetic nanocomposite was characterized by field-emission scanning electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, nitrogen adsorption/desorption isotherms, and vibration sample magnetometer. The obtained results revealed the successful synthesis and functionalization of the magnetic nanocomposite. The adsorbents exhibited good magnetic properties with high saturation magnetization and high specific surface area. The adsorption isotherms and kinetics of anionic dyes were described by the Freundlich and pseudo-second-order models, respectively. It was found that the kinetics of adsorption of both the investigated dyes by the dendrimer-functionalized magnetic composite is considerably faster than the magnetic composite under the same condition. The adsorption capacity of the dendrimer-functionalized magnetic composite for investigated direct and acid dyes was 173.7 and 122.5 mg/g, respectively, which was higher than those of the existing magnetic adsorbents. This work provides new insights into the synthesis and application of hybrid magnetic adsorbents with synergistic properties of nanoporous metal-organic frameworks and dendrimer with a large number of functional groups for the removal of organic dyes.

9.
Life Sci ; 240: 117099, 2020 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-31760098

RESUMEN

Obviously, delivery of the medications to the brain is more difficult than other tissues due to the existence of a strong obstacle, which is called blood-brain barrier (BBB). Because of the lipophilic nature of this barrier, it would be a complex (and in many cases impossible) process to cross the medications with hydrophilic behavior from BBB and deliver them to the brain. Thus, novel intricate drug-carriers in nano scales have been recently developed and suitably applied for this purpose. One of the most important categories of these hydrophilic medications, are reactivators for acetyl cholinesterase (AChE) enzyme that facilitates the breakdown of acetylcholine (as a neurotransmitter). The AChE function is inhibited by organophosphorus (OP) nerve agents that are extremely used in military conflicts. In this review, the abilities of the nanosized drug delivery systems to perform as suitable vehicles for AChE reactivators are comprehensively discussed.


Asunto(s)
Encefalopatías/tratamiento farmacológico , Encéfalo/efectos de los fármacos , Reactivadores de la Colinesterasa/administración & dosificación , Reactivadores de la Colinesterasa/uso terapéutico , Sistemas de Liberación de Medicamentos , Animales , Barrera Hematoencefálica/efectos de los fármacos , Portadores de Fármacos , Humanos , Nanoestructuras , Relación Estructura-Actividad
10.
Iran J Pharm Res ; 16(3): 1059-1070, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29201094

RESUMEN

In this research, dipeptide (his-ß-alanine) and porphyrin derivatives were choosen for comparing chelating ability of toxic metals such as Al3+, Cu2+, Hg2+ and Pb2+in-vitro. The reason for choosing these two compounds is that both of them are naturally present in biological systems and comparison of chelating ability of these two compounds has not yet been done. Synthesis and comparison of kinetic study of dipeptide (his-ß-alanine), meso-tetrakis(4-trimethylanilinium) porphyrin (TAPP) and Tetrakis(4-sulfonatophenyl)porphyrin (TPPS4) were carried out by our team. In addition, cytotoxicity assays of metals and chelators were also performed using methylthiazoletetrazolium (MTT) test. Furthermore we investigated the protective effect of chelators against cytotoxicity, induced by differenrt toxic metals such as Al3+, Cu2+, Hg2+ and Pb2+ on human lymphocytes. EC50 values on human lymphocytes obtained after 12 h. incubation for Al3+, Cu2+ and Hg2+ were 30, 51, 3 µM respectively and for Pb2+ no cytotoxicity was observed on human lymphocyte up to 1000 µM concentration. EC50 obtained for chelators dipeptide, TPPS4 and TAPP were 948, 472 and 175 µM respectively. Pretreatment of human lymphocyte with subtoxic concentations of chelators reduced toxicity of the metals against human blood lymphocytes.

11.
Water Sci Technol ; 71(8): 1249-54, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25909737

RESUMEN

In this study, zinc oxide (ZnO) nanorods have been synthesized using a simple template-free precipitation technique and deposited on glass substrate. The meso-tetrakis(4-sulfonatophenyl)porphyrin (TPPS) has been synthesized and then immobilized on the surface of ZnO nanorods to prepare an organic/inorganic composite. The samples were characterized by various techniques such as X-ray diffraction, diffuse reflectance spectra, Fourier transform-infrared spectroscopy and scanning electron microscopy. In addition, the photobactericidal activity of TPPS/ZnO composite, TPPS and ZnO nanorods was tested against the pathogenic bacterium of Escherichia coli under visible LED lamp irradiation. The results indicate that the photobactericidal activity of TPPS-loaded ZnO nanorods was better than TPPS or ZnO nanorods, separately.


Asunto(s)
Desinfección/métodos , Luz , Nanotubos/química , Porfirinas/química , Óxido de Zinc/química , Bacterias/efectos de los fármacos , Bacterias/efectos de la radiación , Escherichia coli , Microscopía Electrónica de Rastreo , Espectroscopía Infrarroja por Transformada de Fourier , Eliminación de Residuos Líquidos , Aguas Residuales/microbiología , Difracción de Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA