Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
1.
Exp Mol Med ; 56(4): 959-974, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38556549

RESUMEN

Methyl-CpG-binding domain protein 2 (Mbd2), a reader of DNA methylation, has been implicated in different types of malignancies, including breast cancer. However, the exact role of Mbd2 in various stages of breast cancer growth and progression in vivo has not been determined. To test whether Mbd2 plays a causal role in mammary tumor growth and metastasis, we performed genetic knockout (KO) of Mbd2 in MMTV-PyMT transgenic mice and compared mammary tumor progression kinetics between the wild-type (PyMT-Mbd2+/+) and KO (PyMT-Mbd2-/-) groups. Our results demonstrated that deletion of Mbd2 in PyMT mice impedes primary tumor growth and lung metastasis at the experimental endpoint (postnatal week 20). Transcriptomic and proteomic analyses of primary tumors revealed that Mbd2 deletion abrogates the expression of several key determinants involved in epithelial-to-mesenchymal transition, such as neural cadherin (N-cadherin) and osteopontin. Importantly, loss of the Mbd2 gene impairs the activation of the PI3K/AKT pathway, which is required for PyMT-mediated oncogenic transformation, growth, and survival of breast tumor cells. Taken together, the results of this study provide a rationale for further development of epigenetic therapies targeting Mbd2 to inhibit the progression of breast cancer.


Asunto(s)
Neoplasias de la Mama , Proteínas de Unión al ADN , Progresión de la Enfermedad , Transición Epitelial-Mesenquimal , Animales , Femenino , Humanos , Ratones , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Neoplasias de la Mama/genética , Línea Celular Tumoral , Modelos Animales de Enfermedad , Metilación de ADN , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Transición Epitelial-Mesenquimal/genética , Regulación Neoplásica de la Expresión Génica , Ratones Noqueados , Ratones Transgénicos , Fosfatidilinositol 3-Quinasas/metabolismo , Transducción de Señal
2.
Transl Psychiatry ; 13(1): 259, 2023 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-37443311

RESUMEN

The Methyl-CpG-Binding Domain Protein family has been implicated in neurodevelopmental disorders. The Methyl-CpG-binding domain 2 (Mbd2) binds methylated DNA and was shown to play an important role in cancer and immunity. Some evidence linked this protein to neurodevelopment. However, its exact role in neurodevelopment and brain function is mostly unknown. Here we show that Mbd2-deficiency in mice (Mbd2-/-) results in deficits in cognitive, social and emotional functions. Mbd2 binds regulatory DNA regions of neuronal genes in the hippocampus and loss of Mbd2 alters the expression of hundreds of genes with a robust down-regulation of neuronal gene pathways. Further, a genome-wide DNA methylation analysis found an altered DNA methylation pattern in regulatory DNA regions of neuronal genes in Mbd2-/- mice. Differentially expressed genes significantly overlap with gene-expression changes observed in brains of Autism Spectrum Disorder (ASD) individuals. Notably, downregulated genes are significantly enriched for human ortholog ASD risk genes. Observed hippocampal morphological abnormalities were similar to those found in individuals with ASD and ASD rodent models. Hippocampal Mbd2 knockdown partially recapitulates the behavioral phenotypes observed in Mbd2-/- mice. These findings suggest that Mbd2 is a novel epigenetic regulator of genes that are associated with ASD in humans. Mbd2 loss causes behavioral alterations that resemble those found in ASD individuals.


Asunto(s)
Trastorno del Espectro Autista , Trastorno Autístico , Humanos , Animales , Ratones , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Islas de CpG , Trastorno Autístico/genética , Trastorno del Espectro Autista/genética , Metilación de ADN , Cognición , ADN/metabolismo , Epigénesis Genética
3.
Epigenomics ; 14(19): 1213-1228, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36325830

RESUMEN

Vitamin D regulates a plethora of physiological processes in the human body and has been proposed to exert several anticancer effects. Epigenetics plays an important role in regulating vitamin D actions. In this review, we highlight the recent advances in the understanding of different epigenetic factors such as lncRNAs, miRNAs, methylation and acetylation influenced by vitamin D and its downstream targets in colorectal cancer to find more potential therapeutic targets. We discuss how vitamin D exerts anticancer properties through interactions between the vitamin D receptor and genes (e.g., SLC30A10), the microenvironment, microbiota and other factors in colorectal cancer. Developing therapeutic approaches targeting the vitamin D signaling system will be aided by a better knowledge of the epigenetic impact of vitamin D.


Vitamin D regulates various physiological processes in the body and could have anticancer effects. These anticancer effects are the result of interactions between many factors such as genes, the environment around the tumors, bacteria in the intestine, etc. in colorectal cancer. Epigenetic factors, including a big network of different molecules in the body that could control our genes without changing DNA, also play a role in regulating vitamin D. This review summarizes the advances in the understanding of different epigenetic factors related to vitamin D and colorectal cancer.


Asunto(s)
Neoplasias Colorrectales , Epigenómica , Humanos , Vitamina D/uso terapéutico , Metilación de ADN , Epigénesis Genética , Vitaminas , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/genética , Microambiente Tumoral
4.
Cancers (Basel) ; 15(1)2022 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-36612044

RESUMEN

Breast cancer (BCa) is the most prevalent cancer in females and has a high rate of mortality, especially due to increased metastasis to skeletal and non-skeletal sites. Despite the marked clinical accomplishment of immune checkpoint inhibitor (CPI) therapy in patients with several cancers, it has had limited success in luminal subtypes of BCa. Accordingly, recent efforts have focused on combination therapy with CPI, including epigenetic modulators, to increase response rates of CPI in luminal BCa. We have previously shown that S-adenosylmethionine (SAM), the ubiquitous methyl donor, has strong anti-cancer effects in various cancers, including all subtypes of BCa. In the current study, we took a novel approach and examined the effect of CPI alone and in combination with SAM on tumor growth and metastasis in a syngeneic mouse model of luminal B BCa. We showed that SAM decreases cell proliferation, colony-formation (survival), and invasion of luminal B BCa cell lines (Eo771, R221A) in vitro. In in vivo studies, in Eo771 tumor-bearing mice, either SAM or anti-PD-1 antibody treatment alone significantly reduced tumor growth and progression, while the SAM+anti-PD-1 combination treatment had the highest anti-cancer efficacy of all groups. The SAM+anti-PD-1 combination reduced the percentage of animals with lung metastasis, as well as total metastatic lesion area, compared to control. Additionally, the SAM+anti-PD-1 combination significantly reduced the skeletal lesion area and protected tibial integrity to a greater extent than the monotherapies in an Eo771 bone metastasis model. Transcriptome analysis of Eo771 primary tumors revealed significant downregulation of pro-metastatic genes, including Matrix metalloproteinases (MMPs) and related pathways. On the other hand, CD8+ T cell infiltration, CD8+ T cell cytotoxicity (elevated granzymes), and immunostimulatory genes and pathways were significantly upregulated by the combination treatment. The results presented point to a combination of SAM with CPI as a possible treatment for luminal B BCa that should be tested in clinical studies.

6.
Int J Mol Sci ; 22(9)2021 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-33921923

RESUMEN

Fibrinolysis is a crucial physiological process that helps to maintain a hemostatic balance by counteracting excessive thrombosis. The components of the fibrinolytic system are well established and are associated with a wide array of physiological and pathophysiological processes. The aberrant expression of several components, especially urokinase-type plasminogen activator (uPA), its cognate receptor uPAR, and plasminogen activator inhibitor-1 (PAI-1), has shown a direct correlation with increased tumor growth, invasiveness, and metastasis. As a result, targeting the fibrinolytic system has been of great interest in the field of cancer biology. Even though there is a plethora of encouraging preclinical evidence on the potential therapeutic benefits of targeting the key oncogenic components of the fibrinolytic system, none of them made it from "bench to bedside" due to a limited number of clinical trials on them. This review summarizes our existing understanding of the various diagnostic and therapeutic strategies targeting the fibrinolytic system during cancer.


Asunto(s)
Antineoplásicos/uso terapéutico , Fibrinólisis/efectos de los fármacos , Neoplasias/diagnóstico , Neoplasias/tratamiento farmacológico , Inhibidor 1 de Activador Plasminogénico/metabolismo , Receptores del Activador de Plasminógeno Tipo Uroquinasa/metabolismo , Activador de Plasminógeno de Tipo Uroquinasa/metabolismo , Animales , Humanos , Neoplasias/metabolismo
7.
Cancers (Basel) ; 13(3)2021 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-33535484

RESUMEN

DNA and RNA methylation play a vital role in the transcriptional regulation of various cell types including the differentiation and function of immune cells involved in pro- and anti-cancer immunity. Interactions of tumor and immune cells in the tumor microenvironment (TME) are complex. TME shapes the fate of tumors by modulating the dynamic DNA (and RNA) methylation patterns of these immune cells to alter their differentiation into pro-cancer (e.g., regulatory T cells) or anti-cancer (e.g., CD8+ T cells) cell types. This review considers the role of DNA and RNA methylation in myeloid and lymphoid cells in the activation, differentiation, and function that control the innate and adaptive immune responses in cancer and non-cancer contexts. Understanding the complex transcriptional regulation modulating differentiation and function of immune cells can help identify and validate therapeutic targets aimed at targeting DNA and RNA methylation to reduce cancer-associated morbidity and mortality.

8.
J Cell Mol Med ; 24(18): 10322-10337, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32720467

RESUMEN

Abnormal DNA methylation orchestrates many of the cancer-related gene expression irregularities such as the inactivation of tumour suppressor genes through hypermethylation as well as activation of prometastatic genes through hypomethylation. The fact that DNA methylation abnormalities can be chemically reversed positions the DNA methylation machinery as an attractive target for anti-cancer drug development. However, although in vitro studies suggested that targeting concordantly hypo- and hypermethylation is of benefit in suppressing both oncogenic and prometastatic functions of breast cancer cells, this has never been tested in a therapeutic setting in vivo. In this context, we investigated the combined therapeutic effects of an approved nutraceutical agent S-adenosylmethionine (SAM) and FDA-approved hypomethylating agent decitabine using the MDA-MB-231 xenograft model of breast cancer and found a pronounced reduction in mammary tumour volume and lung metastasis compared to the animals in the control and monotherapy treatment arms. Immunohistochemical assessment of the primary breast tumours showed a significantly reduced expression of proliferation (Ki-67) and angiogenesis (CD31) markers following combination therapy as compared to the control group. Global transcriptome and methylome analyses have revealed that the combination therapy regulates genes from several key cancer-related pathways that are abnormally expressed in breast tumours. To our knowledge, this is the first preclinical study demonstrating the anti-cancer therapeutic potential of using a combination of methylating (SAM) and demethylating agent (decitabine) in vivo. Results from this study provide a molecularly founded rationale for clinically testing a combination of agents targeting the epigenome to reduce the morbidity and mortality from breast cancer.


Asunto(s)
Antineoplásicos/uso terapéutico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Decitabina/uso terapéutico , S-Adenosilmetionina/uso terapéutico , Animales , Antineoplásicos/farmacología , Neoplasias de la Mama/genética , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Metilación de ADN/efectos de los fármacos , Metilación de ADN/genética , Decitabina/farmacología , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Ratones Endogámicos NOD , Ratones SCID , Metástasis de la Neoplasia , Reproducibilidad de los Resultados , S-Adenosilmetionina/farmacología , Transcripción Genética/efectos de los fármacos , Transcriptoma/genética , Ensayos Antitumor por Modelo de Xenoinjerto
9.
Bone Res ; 8: 28, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32714613

RESUMEN

Therapeutic targeting of metastatic breast cancer still remains a challenge as the tumor cells are highly heterogenous and exploit multiple pathways for their growth and metastatic spread that cannot always be targeted by a single-agent monotherapy regimen. Therefore, a rational approach through simultaneous targeting of several pathways may provide a better anti-cancer therapeutic effect. We tested this hypothesis using a combination of two nutraceutical agents S-adenosylmethionine (SAM) and Vitamin D (Vit. D) prohormone [25-hydroxyvitamin D; '25(OH)D'] that are individually known to exert distinct changes in the expression of genes involved in tumor growth and metastasis. Our results show that both SAM and 25(OH)D monotherapy significantly reduced proliferation and clonogenic survival of a panel of breast cancer cell lines in vitro and inhibited tumor growth, lung metastasis, and breast tumor cell colonization to the skeleton in vivo. However, these effects were significantly more pronounced in the combination setting. RNA-Sequencing revealed that the transcriptomic footprint on key cancer-related signaling pathways is broader in the combination setting than any of the monotherapies. Furthermore, comparison of the differentially expressed genes from our transcriptome analyses with publicly available cancer-related dataset demonstrated that the combination treatment upregulates genes from immune-related pathways that are otherwise downregulated in bone metastasis in vivo. Since SAM and Vit. D are both approved nutraceuticals with known safety profiles, this combination treatment may serve as a novel strategy to reduce breast cancer-associated morbidity and mortality.

10.
BMC Cancer ; 20(1): 588, 2020 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-32576165

RESUMEN

BACKGROUND: Prostate Cancer (PCa) is the second most common cancer in men where advancements have been made for early detection using imaging techniques, however these are limited by lesion size. Immune surveillance has emerged as an effective approach for early detection and to monitor disease progression. In recent studies, we have shown that host peripheral blood immune cells undergo changes in DNA methylation in liver and breast cancer. METHODS: In the current study, we examined the DNA methylation status of peripheral blood T cells of men with positive biopsy for PCa versus men with negative biopsy having benign prostate tissue, defined as controls. T cells DNA was isolated and subjected to Illumina Infinium methylation EPIC array and validated using Illumina amplicon sequencing and pyrosequencing platforms. RESULTS: Differential methylation of 449 CG sites between control and PCa T cell DNA showed a correlation with Gleason score (p < 0.05). Two hundred twenty-three differentially methylated CGs between control and PCa (Ƨ +/- 10%, p < 0.05), were enriched in pathways involved in immune surveillance system. Three CGs which were found differentially methylated following DMP (Differentially methylated probes) analysis of ChAMP remained significant after BH (Benjamini-Hochberg) correction, of which, 2 CGs were validated. Predictive ability of combination of these 3 CGs (polygenic methylation score, PMS) to detect PCa had high sensitivity, specificity and overall accuracy. PMS also showed strong positive correlation with Gleason score and tumor volume of PCa patients. CONCLUSIONS: Results from the current study provide for the first-time a potential role of DNA methylation changes in peripheral T cells in PCa. This non-invasive methodology may allow for early intervention and stratification of patients into different prognostic groups to reduce PCa associated morbidity from repeat invasive prostate biopsies and design therapeutic strategy to reduce PCa associated mortality.


Asunto(s)
Metilación de ADN/inmunología , Epigenómica/métodos , Vigilancia Inmunológica/genética , Neoplasias de la Próstata/diagnóstico , Linfocitos T/inmunología , Biopsia , Estudios de Casos y Controles , Epigenoma/inmunología , Voluntarios Sanos , Humanos , Masculino , Persona de Mediana Edad , Clasificación del Tumor , Pronóstico , Próstata/patología , Neoplasias de la Próstata/sangre , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/inmunología , Sensibilidad y Especificidad , Análisis de Secuencia de ADN , Carga Tumoral
11.
Bone Res ; 8: 18, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32337090

RESUMEN

Urokinase plasminogen activator receptor (uPAR) is implicated in tumor growth and metastasis due to its ability to activate latent growth factors, proteases, and different oncogenic signaling pathways upon binding to different ligands. Elevated uPAR expression is correlated with the increased aggressiveness of cancer cells, which led to its credentialing as an attractive diagnostic and therapeutic target in advanced solid cancer. Here, we examine the antitumor effects of a humanized anti-uPAR antibody (huATN-658) alone and in combination with the approved bisphosphonate Zometa (Zoledronic acid) on skeletal lesion through a series of studies in vitro and in vivo. Treatment with huATN-658 or Zometa alone significantly decreased human MDA-MB-231 cell proliferation and invasion in vitro, effects which were more pronounced when huATN-658 was combined with Zometa. In vivo studies demonstrated that huATN-658 treatment significantly reduced MDA-MB-231 primary tumor growth compared with controls. In a model of breast tumor-induced bone disease, huATN-658 and Zometa were equally effective in reducing skeletal lesions. The skeletal lesions were significantly reduced in animals receiving the combination of huATN-658 + Zometa compared with monotherapy treatment. These effects were due to a significant decrease in osteoclastic activity and tumor cell proliferation in the combination treatment group. Transcriptome analysis revealed that combination treatment significantly changes the expression of genes from signaling pathways implicated in tumor progression and bone remodeling. Results from these studies provide a rationale for the continued development of huATN-658 as a monotherapy and in combination with currently approved agents such as Zometa in patients with metastatic breast cancer.

12.
Adv Exp Med Biol ; 1164: 179-196, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31576549

RESUMEN

DNA methylation is a chemically reversible epigenetic modification that regulates the chromatin structure and gene expression, and thereby takes part in various cellular processes like embryogenesis, genomic imprinting, X-chromosome inactivation, and genome stability. Alterations in the normal methylation levels of DNA may contribute to the development of pathological conditions like cancer. Even though both hypo- and hypermethylation-mediated abnormalities are prevalent in the cancer genome, the field of cancer epigenetics has been more focused on targeting hypermethylation. As a result, DNA hypomethylation-mediated abnormalities remained relatively less explored, and currently, there are no approved drugs that can be clinically used to target hypomethylation. Understanding the precise role of DNA hypomethylation is not only crucial from a mechanistic point of view but also for the development of pharmacological agents that can reverse the hypomethylated state of the DNA. This chapter focuses on the causes and impact of DNA hypomethylation in the development of cancer and describes the possible ways to pharmacologically target it, especially by using a naturally occurring physiologic agent S-adenosylmethionine (SAM).


Asunto(s)
Metilación de ADN , Epigénesis Genética , Neoplasias , Epigenómica , Humanos , Neoplasias/genética , Neoplasias/terapia
13.
Front Oncol ; 9: 489, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31245293

RESUMEN

DNA methylation is a major epigenetic process that regulates chromatin structure which causes transcriptional activation or repression of genes in a context-dependent manner. In general, DNA methylation takes place when methyl groups are added to the appropriate bases on the genome by the action of "writer" molecules known as DNA methyltransferases. How these methylation marks are read and interpreted into different functionalities represents one of the main mechanisms through which the genes are switched "ON" or "OFF" and typically involves different types of "reader" proteins that can recognize and bind to the methylated regions. A tightly balanced regulation exists between the "writers" and "readers" in order to mediate normal cellular functions. However, alterations in normal methylation pattern is a typical hallmark of cancer which alters the way methylation marks are written, read and interpreted in different disease states. This unique characteristic of DNA methylation "readers" has identified them as attractive therapeutic targets. In this review, we describe the current state of knowledge on the different classes of DNA methylation "readers" identified thus far along with their normal biological functions, describe how they are dysregulated in cancer, and discuss the various anti-cancer therapies that are currently being developed and evaluated for targeting these proteins.

14.
J Bone Miner Res ; 33(11): 1980-1989, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-29924424

RESUMEN

Osteoporosis is one of the most common age-related progressive bone diseases in elderly people. Approximately one in three women and one in five men are predisposed to developing osteoporosis. In postmenopausal women, a reduction in BMD leads to an increased risk of fractures. In the current study, we delineated the DNA methylation signatures in whole blood samples of postmenopausal osteoporotic women. We obtained whole blood DNA from 22 normal women and 22 postmenopausal osteoporotic women (51 to 89 years old) from the Canadian Multicenter Osteoporosis Study (CaMos) cohort. These DNA samples were subjected to Illumina Infinium human methylation 450 K analysis. Illumina 450K raw data were analyzed by Genome Studio software. Analysis of the female participants with early and advanced osteoporosis resulted in the generation of a list of 1233 differentially methylated CpG sites when compared with age-matched normal women. T test, ANOVA, and post hoc statistical analyses were performed, and 77 significantly differentially methylated CpG sites were identified. From the 13 most significant genes, ZNF267, ABLIM2, RHOJ, CDKL5, and PDCD1 were selected for their potential role in bone biology. A weighted polygenic DNA methylation score of these genes predicted osteoporosis at an early stage with high sensitivity and specificity and correlated with measures of bone density. Pyrosequencing analysis of these genes was performed to validate the results obtained from Illumina 450 K methylation analysis. The current study provides proof of principal for the role of DNA methylation in osteoporosis. Using whole blood DNA methylation analysis, women at risk of developing osteoporosis can be identified before a diagnosis of osteoporosis is made using BMD as a screening method. Early diagnosis will help to select patients who might benefit from early therapeutic intervention. © 2018 American Society for Bone and Mineral Research.


Asunto(s)
ADN/sangre , Epigénesis Genética , Osteoporosis/sangre , Osteoporosis/genética , Posmenopausia/sangre , Posmenopausia/genética , Anciano , Anciano de 80 o más Años , Biomarcadores/sangre , Análisis por Conglomerados , Islas de CpG/genética , Metilación de ADN/genética , Femenino , Genoma Humano , Humanos , Persona de Mediana Edad , Curva ROC , Reproducibilidad de los Resultados
15.
BMC Cancer ; 18(1): 574, 2018 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-29776342

RESUMEN

BACKGROUND: Immune surveillance acts as a defense mechanism in cancer, and its disruption is involved in cancer progression. DNA methylation reflects the phenotypic identity of cells and recent data suggested that DNA methylation profiles of T cells and peripheral blood mononuclear cells (PBMC) are altered in cancer progression. METHODS: We enrolled 19 females with stage 1 and 2, nine with stage 3 and 4 and 9 age matched healthy women. T cells were isolated from peripheral blood and extracted DNA was subjected to Illumina 450 K DNA methylation array analysis. Raw data was analyzed by BMIQ, ChAMP and ComBat followed by validation of identified genes by pyrosequencing. RESULTS: Analysis of data revealed ~ 10,000 sites that correlated with breast cancer progression and established a list of 89 CG sites that were highly correlated (p < 0.01, r > 0.7, r < - 0.7) with breast cancer progression. The vast majority of these sites were hypomethylated and enriched in genes with functions in the immune system. CONCLUSIONS: The study points to the possibility of using DNA methylation signatures as a noninvasive method for early detection of breast cancer and its progression which need to be tested in clinical studies.


Asunto(s)
Biomarcadores de Tumor/genética , Neoplasias de la Mama/genética , Metilación de ADN/inmunología , Vigilancia Inmunológica/genética , Linfocitos T/metabolismo , Adulto , Anciano , Anciano de 80 o más Años , Neoplasias de la Mama/diagnóstico , Neoplasias de la Mama/inmunología , Neoplasias de la Mama/patología , Estudios de Casos y Controles , Progresión de la Enfermedad , Epigénesis Genética , Femenino , Voluntarios Sanos , Humanos , Persona de Mediana Edad , Análisis de Secuencia por Matrices de Oligonucleótidos , Linfocitos T/inmunología
16.
Oncotarget ; 9(4): 5169-5183, 2018 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-29435170

RESUMEN

DNA hypomethylation coordinately targets various signaling pathways involved in tumor growth and metastasis. At present, there are no approved therapeutic modalities that target hypomethylation. In this regard, we examined the therapeutic plausibility of using universal methyl group donor S-adenosylmethionine (SAM) to block breast cancer development, growth, and metastasis through a series of studies in vitro using two different human breast cancer cell lines (MDA-MB-231 and Hs578T) and in vivo using an MDA-MB-231 xenograft model of breast cancer. We found that SAM treatment caused a significant dose-dependent decrease in cell proliferation, invasion, migration, anchorage-independent growth and increased apoptosis in vitro. These results were recapitulated in vivo where oral administration of SAM reduced tumor volume and metastasis in green fluorescent protein (GFP)-tagged MDA-MB-231 xenograft model. Gene expression analyses validated the ability of SAM to decrease the expression of several key genes implicated in cancer progression and metastasis in both cell lines and breast tumor xenografts. SAM was found to be bioavailable in the serum of experimental animals as determined by enzyme-linked immunosorbent assay and no notable adverse side effects were seen including any change in animal behavior. The results of this study provide compelling evidence to evaluate the therapeutic potential of methylating agents like SAM in patients with breast cancer to reduce cancer-associated morbidity and mortality.

17.
Front Oncol ; 8: 24, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29484286

RESUMEN

The plasminogen activator (PA) system is an extracellular proteolytic enzyme system associated with various physiological and pathophysiological processes. A large body of evidence support that among the various components of the PA system, urokinase-type plasminogen activator (uPA), its receptor (uPAR), and plasminogen activator inhibitor-1 and -2 (PAI-1 and PAI-2) play a major role in tumor progression and metastasis. The binding of uPA with uPAR is instrumental for the activation of plasminogen to plasmin, which in turn initiates a series of proteolytic cascade to degrade the components of the extracellular matrix, and thereby, cause tumor cell migration from the primary site of origin to a distant secondary organ. The components of the PA system show altered expression patterns in several common malignancies, which have identified them as ideal diagnostic, prognostic, and therapeutic targets to reduce cancer-associated morbidity and mortality. This review summarizes the various components of the PA system and focuses on the role of uPA-uPAR in different biological processes especially in the context of malignancy. We also discuss the current state of knowledge of uPA-uPAR-targeted diagnostic and therapeutic strategies for various malignancies.

20.
Br J Pharmacol ; 172(11): 2769-81, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25631332

RESUMEN

BACKGROUND AND PURPOSE: DNA hypomethylation was previously implicated in metastasis. In the present study, we examined whether methyl supplementation with the universal methyl donor S-adenosylmethionine (SAM) inhibits prostate cancer associated skeletal metastasis. EXPERIMENTAL APPROACH: Highly invasive human prostate cancer cells PC-3 and DU-145 were treated with vehicle alone, S-adenosylhomocysteine (SAH) or SAM and their effects on tumour cell proliferation, invasion, migration and colony formation were monitored. For in vivo studies, control (SAH) and SAM-treated PC-3 cells were injected into the tibia of Fox chase SCID mice and skeletal lesions were determined by X-ray and µCT. To understand possible mechanisms involved, we delineated the effect of SAM on the genome-wide methylation profile of PC-3 cells. KEY RESULTS: Treatment with SAM resulted in a dose-dependent inhibition of tumour cell proliferation, invasion, cell migration, colony formation and cell cycle characteristics. Animals injected with 250 µM SAM-treated cells developed significantly smaller skeletal lesions, which were associated with increases in bone volume to tumour volume ratio and connectivity density as well as decreased trabecular spacing. Genome-wide methylation analysis showed differential methylation in several key signalling pathways implicated in prostate cancer including the signal transducer and activator of transcription 3 (STAT3) pathway. A selective STAT3 inhibitor decreased tumour cell invasion, effects which were less pronounced as compared with SAM. CONCLUSIONS AND IMPLICATIONS: These studies provide a possible mechanism for the role of DNA demethylation in the development of skeletal metastasis and a rationale for the use of hypermethylation pharmacological agents to impede the development and progression of skeletal metastasis.


Asunto(s)
Adenocarcinoma/genética , Neoplasias Óseas/genética , Proliferación Celular/efectos de los fármacos , Metilación de ADN/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Neoplasias de la Próstata/genética , S-Adenosilmetionina/farmacología , Adenocarcinoma/secundario , Animales , Neoplasias Óseas/secundario , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Movimiento Celular/genética , Proliferación Celular/genética , Humanos , Técnicas In Vitro , Masculino , Ratones , Ratones SCID , Invasividad Neoplásica/genética , Metástasis de la Neoplasia/genética , Trasplante de Neoplasias , Neoplasias de la Próstata/patología , Tibia/diagnóstico por imagen , Tibia/efectos de los fármacos , Microtomografía por Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA