Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
1.
FASEB J ; 38(11): e23648, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38822661

RESUMEN

Previous studies on germ-free (GF) animals have described altered anxiety-like and social behaviors together with dysregulations in brain serotonin (5-HT) metabolism. Alterations in circulating 5-HT levels and gut 5-HT metabolism have also been reported in GF mice. In this study, we conducted an integrative analysis of various behaviors as well as markers of 5-HT metabolism in the brain and along the GI tract of GF male mice compared with conventional (CV) ones. We found a strong decrease in locomotor activity, accompanied by some signs of increased anxiety-like behavior in GF mice compared with CV mice. Brain gene expression analysis showed no differences in HTR1A and TPH2 genes. In the gut, we found decreased TPH1 expression in the colon of GF mice, while it was increased in the cecum. HTR1A expression was dramatically decreased in the colon, while HTR4 expression was increased both in the cecum and colon of GF mice compared with CV mice. Finally, SLC6A4 expression was increased in the ileum and colon of GF mice compared with CV mice. Our results add to the evidence that the microbiota is involved in regulation of behavior, although heterogeneity among studies suggests a strong impact of genetic and environmental factors on this microbiota-mediated regulation. While no impact of GF status on brain 5-HT was observed, substantial differences in gut 5-HT metabolism were noted, with tissue-dependent results indicating a varying role of microbiota along the GI tract.


Asunto(s)
Conducta Animal , Vida Libre de Gérmenes , Serotonina , Animales , Serotonina/metabolismo , Ratones , Masculino , Microbioma Gastrointestinal/fisiología , Encéfalo/metabolismo , Triptófano Hidroxilasa/metabolismo , Triptófano Hidroxilasa/genética , Ansiedad/metabolismo , Ansiedad/microbiología , Proteínas de Transporte de Serotonina en la Membrana Plasmática/metabolismo , Proteínas de Transporte de Serotonina en la Membrana Plasmática/genética , Ratones Endogámicos C57BL , Receptor de Serotonina 5-HT1A/metabolismo , Receptor de Serotonina 5-HT1A/genética , Colon/metabolismo , Colon/microbiología
2.
Drug Metab Dispos ; 52(4): 274-287, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38307852

RESUMEN

Human microbiomes, particularly in the gut, could have a major impact on the efficacy and toxicity of drugs. However, gut microbial metabolism is often neglected in the drug discovery and development process. Medicen, a Paris-based human health innovation cluster, has gathered more than 30 international leading experts from pharma, academia, biotech, clinical research organizations, and regulatory science to develop proposals to facilitate the integration of microbiome science into drug discovery and development. Seven subteams were formed to cover the complementary expertise areas of 1) pharma experience and case studies, 2) in silico microbiome-drug interaction, 3) in vitro microbial stability screening, 4) gut fermentation models, 5) animal models, 6) microbiome integration in clinical and regulatory aspects, and 7) microbiome ecosystems and models. Each expert team produced a state-of-the-art report of their respective field highlighting existing microbiome-related tools at every stage of drug discovery and development. The most critical limitations are the growing, but still limited, drug-microbiome interaction data to produce predictive models and the lack of agreed-upon standards despite recent progress. In this paper we will report on and share proposals covering 1) how microbiome tools can support moving a compound from drug discovery to clinical proof-of-concept studies and alert early on potential undesired properties stemming from microbiome-induced drug metabolism and 2) how microbiome data can be generated and integrated in pharmacokinetic models that are predictive of the human situation. Examples of drugs metabolized by the microbiome will be discussed in detail to support recommendations from the working group. SIGNIFICANCE STATEMENT: Gut microbial metabolism is often neglected in the drug discovery and development process despite growing evidence of drugs' efficacy and safety impacted by their interaction with the microbiome. This paper will detail existing microbiome-related tools covering every stage of drug discovery and development, current progress, and limitations, as well as recommendations to integrate them into the drug discovery and development process.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Animales , Humanos , Descubrimiento de Drogas , Interacciones Farmacológicas
3.
Cell Host Microbe ; 31(12): 1947-1949, 2023 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-38096785

RESUMEN

The effect of the microbiota-gut-brain axis on cognitive development in infancy is increasingly being scrutinized. In this issue of Cell Host & Microbe, Cerdó, Ruiz, and colleagues skillfully combine clinical and preclinical analyses, including a fecal transplantation experiment, to reveal associations between microbiota composition, cognitive scores, and histidine metabolism.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Trasplante de Microbiota Fecal , Cognición
4.
Nutrients ; 15(21)2023 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-37960288

RESUMEN

The effect of supplementation with Lactobacillus strains to prevent the consequences of chronic stress on anxiety in mouse strains sensitive to stress and the consequences on gut microbiota have been relatively unexplored. Thus, we administered a Lacticaseibacillus casei LA205 and Lacticaseibacillus paracasei LA903 mix to male BALB/cByJrj mice two weeks before and during 21-day chronic restraint stress (CRS) (non-stressed/solvent (NS-PBS), non-stressed/probiotics (NS-Probio), CRS/solvent (S-PBS), CRS/probiotics (S-Probio)). CRS resulted in lower body weight and coat state alteration, which were attenuated by the probiotic mix. S-Probio mice showed less stress-associated anxiety-like behaviours than their NS counterpart, while no difference was seen in PBS mice. Serum corticosterone levels were significantly higher in the S-Probio group than in other groups. In the hippocampus, mRNA expression of dopamine and serotonin transporters was lower in S-Probio than in S-PBS mice. Few differences in bacterial genera proportions were detected, with a lower relative abundance of Alistipes in S-Probio vs. S-PBS. CRS was accompanied by a decrease in the proportion of caecal acetate in S-PBS mice vs. NS-PBS, but not in the intervention groups. These data show that the probiotic mix could contribute to better coping with chronic stress, although the precise bacterial mechanism is still under investigation.


Asunto(s)
Microbioma Gastrointestinal , Probióticos , Ratones , Animales , Masculino , Lacticaseibacillus , Lactobacillus , Probióticos/farmacología , Solventes
5.
Microbiol Spectr ; 11(3): e0466722, 2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-36995244

RESUMEN

Metagenome analyses of the human microbiome suggest that horizontal gene transfer (HGT) is frequent in these rich and complex microbial communities. However, so far, only a few HGT studies have been conducted in vivo. In this work, three different systems mimicking the physiological conditions encountered in the human digestive tract were tested, including (i) the TNO gastro-Intestinal tract Model 1 (TIM-1) system (for the upper part of the intestine), (ii) the ARtificial COLon (ARCOL) system (to mimic the colon), and (iii) a mouse model. To increase the likelihood of transfer by conjugation of the integrative and conjugative element studied in the artificial digestive systems, bacteria were entrapped in alginate, agar, and chitosan beads before being placed in the different gut compartments. The number of transconjugants detected decreased, while the complexity of the ecosystem increased (many clones in TIM-1 but only one clone in ARCOL). No clone was obtained in a natural digestive environment (germfree mouse model). In the human gut, the richness and diversity of the bacterial community would offer more opportunities for HGT events to occur. In addition, several factors (SOS-inducing agents, microbiota-derived factors) that potentially increase in vivo HGT efficiency were not tested here. Even if HGT events are rare, expansion of the transconjugant clones can happen if ecological success is fostered by selecting conditions or by events that destabilize the microbial community. IMPORTANCE The human gut microbiota plays a key role in maintaining normal host physiology and health, but its homeostasis is fragile. During their transit in the gastrointestinal tract, bacteria conveyed by food can exchange genes with resident bacteria. New traits acquired by HGT (e.g., new catabolic properties, bacteriocins, antibiotic resistance) can impact the gut microbial composition and metabolic potential. We showed here that TIM-1, a system mimicking the upper digestive tract, is a useful tool to evaluate HGT events in conditions closer to the physiological ones. Another important fact pointed out in this work is that Enterococcus faecalis is a good candidate for foreign gene acquisition. Due to its high ability to colonize the gut and acquire mobile genetic elements, this commensal bacterium could serve as an intermediate for HGT in the human gut.


Asunto(s)
Microbiota , Streptococcus thermophilus , Animales , Ratones , Humanos , Streptococcus thermophilus/genética , Conjugación Genética , Tracto Gastrointestinal , Transferencia de Gen Horizontal
6.
Gut Microbes ; 15(1): 2172666, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36801067

RESUMEN

Bacterial colonization in the gut plays a pivotal role in neonatal necrotizing enterocolitis (NEC) development, but the relationship between bacteria and NEC remains unclear. In this study, we aimed to elucidate whether bacterial butyrate end-fermentation metabolites participate in the development of NEC lesions and confirm the enteropathogenicity of Clostridium butyricum and Clostridium neonatale in NEC. First, we produced C.butyricum and C.neonatale strains impaired in butyrate production by genetically inactivating the hbd gene encoding ß-hydroxybutyryl-CoA dehydrogenase that produces end-fermentation metabolites. Second, we evaluated the enteropathogenicty of the hbd-knockout strains in a gnotobiotic quail model of NEC. The analyses showed that animals harboring these strains had significantly fewer and less intense intestinal lesions than those harboring the respective wild-type strains. In the absence of specific biological markers of NEC, the data provide original and new mechanistic insights into the disease pathophysiology, a necessary step for developing potential novel therapies.


Asunto(s)
Clostridium butyricum , Enterocolitis Necrotizante , Microbioma Gastrointestinal , Enfermedades del Recién Nacido , Recién Nacido , Humanos , Animales , Clostridium butyricum/genética , Enterocolitis Necrotizante/microbiología , Fermentación , Butiratos
7.
Nutr Neurosci ; 26(10): 1034-1044, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36154930

RESUMEN

Objective: Stressed individuals tend to turn to calorie-rich food, also known as 'comfort food' for the temporary relief it provides. The emotional eating drive is highly variable among subjects. Using a rodent model, we explored the plasmatic and neurobiological differences between 'high and low emotional eaters' (HEE and LEE).Methods: 40 male mice were exposed for 5 weeks to a protocol of unpredictable chronic mild stress. Every 3 or 4 days, they were submitted to a 1-h restraint stress, immediately followed by a 3-h period during which a choice between chow and chocolate sweet cereals was proposed. The dietary intake was measured by weighing. Plasmatic and neurobiological characteristics were compared in mice displaying high vs low intakes.Results: Out of 40 mice, 8 were considered as HEE because of their high post-stress eating score, and 8 as LEE because of their consistent low intake. LEE displayed higher plasma corticosterone and lower levels of NPY than HEE, but acylated and total ghrelin were similar in both groups. In the brain, the abundance of NPY neurons in the arcuate nucleus of the hypothalamus was similar in both groups, but was higher in the ventral hippocampus and the basal lateral amygdala of LEE. The lateral hypothalamus LEE had also more orexin (OX) positive neurons. Both NPY and OX are orexigenic peptides and mood regulators.Discussion: Emotional eating difference was reflected in plasma and brain structures implicated in emotion and eating regulation. These results concur with the psychological side of food consumption.


Asunto(s)
Ingestión de Alimentos , Emociones , Ratones , Masculino , Animales , Ingestión de Alimentos/fisiología , Emociones/fisiología , Hipotálamo , Afecto/fisiología , Ingestión de Energía
8.
Microbiome ; 10(1): 135, 2022 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-36002880

RESUMEN

BACKGROUND: Succinate is produced by both human cells and by gut bacteria and couples metabolism to inflammation as an extracellular signaling transducer. Circulating succinate is elevated in patients with obesity and type 2 diabetes and is linked to numerous complications, yet no studies have specifically addressed the contribution of gut microbiota to systemic succinate or explored the consequences of reducing intestinal succinate levels in this setting. RESULTS: Using germ-free and microbiota-depleted mouse models, we show that the gut microbiota is a significant source of circulating succinate, which is elevated in obesity. We also show in vivo that therapeutic treatments with selected bacteria diminish the levels of circulating succinate in obese mice. Specifically, we demonstrate that Odoribacter laneus is a promising probiotic based on its ability to deplete succinate and improve glucose tolerance and the inflammatory profile in two independent models of obesity (db/db mice and diet-induced obese mice). Mechanistically, this is partly mediated by the succinate receptor 1. Supporting these preclinical findings, we demonstrate an inverse correlation between plasma and fecal levels of succinate in a cohort of patients with severe obesity. We also show that plasma succinate, which is associated with several components of metabolic syndrome including waist circumference, triglycerides, and uric acid, among others, is a primary determinant of insulin sensitivity evaluated by the euglycemic-hyperinsulinemic clamp. CONCLUSIONS: Overall, our work uncovers O. laneus as a promising next-generation probiotic to deplete succinate and improve glucose tolerance and obesity-related inflammation. Video Abstract.


Asunto(s)
Glucemia , Diabetes Mellitus Tipo 2 , Animales , Bacteroidetes , Diabetes Mellitus Tipo 2/microbiología , Dieta Alta en Grasa , Humanos , Inflamación , Ratones , Ratones Endogámicos C57BL , Ratones Obesos , Obesidad/etiología , Ácido Succínico
9.
Eur J Neurosci ; 55(8): 1917-1933, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35393704

RESUMEN

µ-opioid receptors (MOPr) play a critical role in social play, reward and pain, in a sex- and age-dependent manner. There is evidence to suggest that sex and age differences in brain MOPr density may be responsible for this variability; however, little is known about the factors driving these differences in cerebral MOPr density. Emerging evidence highlights gut microbiota's critical influence and its bidirectional interaction with the brain on neurodevelopment. Therefore, we aimed to determine the impact of gut microbiota on MOPr density in male and female brains at different developmental stages. Quantitative [3 H]DAMGO autoradiographic binding was carried out in the forebrain of male and female conventional (CON) and germ-free (GF) rats at postnatal days (PND) 8, 22 and 116-150. Significant 'microbiota status X sex', 'age X brain region' interactions and microbiota status- and age-dependent effects on MOPr binding were uncovered. Microbiota status influenced MOPr levels in males but not females, with higher MOPr levels observed in GF versus CON rats overall regions and age groups. In contrast, no overall sex differences were observed in GF or CON rats. Interestingly, within-age planned comparison analysis conducted in frontal cortical and brain regions associated with reward revealed that this microbiota effect was restricted only to PND22 rats. Thus, this pilot study uncovers the critical sex-dependent role of gut microbiota in regulating cerebral MOPr density, which is restricted to the sensitive developmental period of weaning. This may have implications in understanding the importance of microbiota during early development on opioid signalling and associated behaviours.


Asunto(s)
Microbiota , Receptores Opioides mu , Analgésicos Opioides , Animales , Femenino , Masculino , Proyectos Piloto , Prosencéfalo/metabolismo , Ratas , Ratas Endogámicas F344 , Receptores Opioides mu/metabolismo
10.
Psychoneuroendocrinology ; 136: 105594, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34875421

RESUMEN

Chronic stress and the gut microbiota appear to comprise a feed-forward loop, which contributes to the development of depressive disorders. Evidence suggests that memory can also be impaired by either chronic stress or microbiota imbalance. However, it remains to be established whether these could be a part of an integrated loop model and be responsible for memory impairments. To shed light on this, we used a two-pronged approach in Japanese quail: first stress-induced alterations in gut microbiota were characterized, then we tested whether this altered microbiota could affect brain and memory function when transferred to a germ-free host. The cecal microbiota of chronically stressed quails was found to be significantly different from that of unstressed individuals with lower α and ß diversities and increased Bacteroidetes abundance largely represented by the Alistipes genus, a well-known stress target in rodents and humans. The transfer of this altered microbiota into germ-free quails decreased their spatial and cue-based memory abilities as previously demonstrated in the stressed donors. The recipients also displayed increased anxiety-like behavior, reduced basal plasma corticosterone levels and differential gene expression in the brain. Furthermore, cecal microbiota transfer from a chronically stressed individual was sufficient to mimic the adverse impact of chronic stress on memory in recipient hosts and this action may be related to the Alistipes genus. Our results provide evidence of a feed-forward loop system linking the microbiota-gut-brain axis to stress and memory function and suggest that maintaining a healthy microbiota could help alleviate memory impairments linked to chronic stress.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Animales , Ansiedad/metabolismo , Corticosterona , Coturnix , Trastornos de la Memoria
11.
Int J Mol Sci ; 22(18)2021 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-34576216

RESUMEN

Autism Spectrum Disorder (ASD) is a set of neurodevelopmental disorders characterised by behavioural impairment and deficiencies in social interaction and communication. A recent study estimated that 1 in 89 children have developed some form of ASD in European countries. Moreover, there is no specific treatment and since ASD is not a single clinical entity, the identification of molecular biomarkers for diagnosis remains challenging. Besides behavioural deficiencies, individuals with ASD often develop comorbid medical conditions including intestinal problems, which may reflect aberrations in the bidirectional communication between the brain and the gut. The impact of faecal microbial composition in brain development and behavioural functions has been repeatedly linked to ASD, as well as changes in the metabolic profile of individuals affected by ASD. Since metabolism is one of the major drivers of microbiome-host interactions, this review aims to report emerging literature showing shifts in gut microbiota metabolic function in ASD. Additionally, we discuss how these changes may be involved in and/or perpetuate ASD pathology. These valuable insights can help us to better comprehend ASD pathogenesis and may provide relevant biomarkers for improving diagnosis and identifying new therapeutic targets.


Asunto(s)
Trastorno del Espectro Autista/microbiología , Trastorno del Espectro Autista/fisiopatología , Microbioma Gastrointestinal , Conducta , Biomarcadores/metabolismo , Barrera Hematoencefálica , Encéfalo/fisiología , Niño , Preescolar , Heces , Femenino , Humanos , Masculino , Metaboloma , Neurotransmisores/metabolismo , Polisacáridos/química
12.
mSphere ; 6(3)2021 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-33952662

RESUMEN

Aerobic bacteria are frequent primocolonizers of the human naive intestine. Their generally accepted role is to eliminate oxygen, which would allow colonization by anaerobes that subsequently dominate bacterial gut populations. In this hypothesis-based study, we revisited this dogma experimentally in a germfree mouse model as a mimic of the germfree newborn. We varied conditions leading to the establishment of the dominant intestinal anaerobe Bacteroides thetaiotaomicron Two variables were introduced: Bacteroides inoculum size and preestablishment by bacteria capable or not of consuming oxygen. High Bacteroides inoculum size enabled its primocolonization. At low inocula, we show that bacterial preestablishment was decisive for subsequent Bacteroides colonization. However, even non-oxygen-respiring bacteria, a hemAEscherichia coli mutant and the intestinal obligate anaerobe Clostridium scindens, facilitated Bacteroides establishment. These findings, which are supported by recent reports, revise the long-held assumption that oxygen scavenging is the main role for aerobic primocolonizing bacteria. Instead, we suggest that better survival of aerobic bacteria ex vivo during vectorization between hosts could be a reason for their frequent primocolonization.


Asunto(s)
Bacterias/metabolismo , Bacteroides thetaiotaomicron/fisiología , Intestinos/microbiología , Oxígeno/metabolismo , Aerobiosis , Animales , Bacterias/clasificación , Humanos , Ratones , Ratones Endogámicos BALB C , Viabilidad Microbiana , Organismos Libres de Patógenos Específicos
13.
Microorganisms ; 9(4)2021 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-33807160

RESUMEN

Gut microbiota metabolizes tryptophan into indole, which can influence brain and behavior. Indeed, some oxidized derivatives of indole, formed in the liver, have neuroactive properties, and indole overproduction by the gut microbiota induces an anxio-depressive phenotype in rodents. The aim of this study was to investigate in humans whether there was a relationship between recurrent depressive symptoms and indole production by the gut microbiota. A case-control study was conducted in 45-65-year-old women, who were participants in the observational prospective NutriNet-Santé Study. Cases were defined as having two Center for Epidemiological Studies-Depression Scales (CES-D) scores ≥ 23 at a two-year interval (recurrent depressive symptoms, n = 87). Each case was matched with two controls (two CES-D <23; n = 174). Urinary excretion of 3-indoxylsulfate, the major final metabolite of indole, was used as a biomarker of indole production by the gut microbiota. Conditional logistic regression models for paired data showed a positive association between urinary 3-indoxylsulfate concentrations, grouped in tertiles, and recurrent depressive symptoms (odds ratio = 2.46, p for trend = 0.0264 in the final model adjusted for confounding factors). This association suggested that indole production by the gut microbiota may play a role in the onset of mood disorders in humans.

14.
Sci Rep ; 11(1): 4365, 2021 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-33623056

RESUMEN

The number of indications for fecal microbiota transplantation is expected to rise, thus increasing the needs for production of readily available frozen or freeze-dried transplants. Using shotgun metagenomics, we investigated the capacity of two novel human fecal microbiota transplants prepared in maltodextrin-trehalose solutions (abbreviated MD and TR for maltodextrin:trehalose, 3:1, w/w, and trehalose:maltodextrin 3:1, w/w, respectively), to colonize a germ-free born mouse model. Gavage with frozen-thawed MD or TR suspensions gave the taxonomic profiles of mouse feces that best resembled those obtained with the fresh inoculum (Spearman correlations based on relative abundances of metagenomic species around 0.80 and 0.75 for MD and TR respectively), while engraftment capacity of defrosted NaCl transplants most diverged (Spearman correlations around 0.63). Engraftment of members of the family Lachnospiraceae and Ruminoccocaceae was the most challenging in all groups of mice, being improved with MD and TR transplants compared to NaCl, but still lower than with the fresh preparation. Improvement of engraftment of this important group in maintaining health represents a challenge that could benefit from further research on fecal microbiota transplant manufacturing.


Asunto(s)
Trasplante de Microbiota Fecal/métodos , Microbioma Gastrointestinal , Animales , Criopreservación/métodos , Vida Libre de Gérmenes , Humanos , Masculino , Metagenómica/métodos , Ratones , Ratones Endogámicos C57BL
15.
Dev Neurobiol ; 81(2): 149-163, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33389811

RESUMEN

Oxytocin (OT) is a developmentally important neuropeptide recognized to play a dominant role in social functioning and stress-related behaviors, in a sex-dependent manner. Nonetheless, the underlining factors driving OT and OT receptor (OTR) early brain development remain unclear. Recent evidence highlight the critical influence of gut microbiota and its bidirectional interaction with the brain on neurodevelopment via the gut microbiota-brain axis. Therefore, we aimed to determine the impact of gut microbiota on the OTR system of the rat brain at different developmental stages in a pilot study. Quantitative OTR [125 I]-OVTA autoradiographic binding was carried out in the forebrain of male and female conventional (CON) and germ-free (GF) rats at postnatal days (PND) 8, 22, and 116-150. OTR binding was also assessed in the eyes of PND 1 and PND 4 GF female rats. Significant "microbiota × sex × region" interaction and age-dependent effects on OTR binding were demonstrated. Microbiota status influenced OTR levels in males but not females with higher levels of OTR observed in GF versus CON rats in the cingulate, prelimbic, and lateral/medial/ventral orbital cortex, and septum across all age groups, while sex differences were observed in GF, but not in CON rats. Interestingly, OTRs present in the eyes of CON rats were abolished in GF rats. This is the first study to uncover a sex-specific role of gut microbiota on the central OTR system, which may have implications in understanding the developmental neuroadaptations critical for behavioral regulation and the etiology of certain neurodevelopmental disorders.


Asunto(s)
Microbioma Gastrointestinal , Oxitocina/química , Receptores de Oxitocina , Animales , Femenino , Masculino , Proyectos Piloto , Prosencéfalo/metabolismo , Ratas
16.
Eur J Nutr ; 60(2): 1059-1069, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32588216

RESUMEN

PURPOSE: Previous epidemiologic studies have provided some evidence of an inverse association between fruit and vegetables consumption and risk of developing recurrent depressive symptoms. This association could possibly be explained by the role of such dietary factors on the gut microbiota. Especially, indole, a metabolite of tryptophan produced by gut bacteria, may be associated with the development of mood disorders. Thus, the purpose of this study was to investigate relationships between fruit and vegetables intake, recurrent depressive symptoms and indole, using measurement of its main urinary excretion form, i.e., 3-indoxylsulfate, as a biomarker. METHODS: A nested case-control study was conducted in 891 women (aged 45-65) participating to the web-based NutriNet-Santé cohort with available dietary data and biological samples. Cases (individuals with recurrent depressive symptoms, n = 297) were defined as having two Center for Epidemiologic Studies-Depression Scale (CES-D) scores ≥ 16 during the follow-up and were matched with 2 controls having two CES-D scores < 16. Urinary 3-indoxylsulfate concentration was measured as a biomarker of indole production by the gut microbiota. Multivariable conditional logistic regression models were used to test the association of both fruit and vegetables consumption and urine 3-indoxylsulfate measurements with recurrent depressive symptoms. We also tested the association between fruit and vegetables consumption and urinary 3-indoxylsulfate levels using multivariate analysis of variance models. RESULTS: We found a significant inverse association between fruit and vegetables consumption and the risk of having recurrent depressive symptoms over a 2-year period. Fruit and vegetables consumption was inversely associated to urinary 3-indoxylsulfate concentration. However, no significant association was observed between urinary 3-indoxylsulfate levels and recurrent depressive symptoms within this sample. CONCLUSIONS: Our results confirm that low fruit and vegetables consumption could be associated with recurrent depressive symptoms. We also found an inverse association between fruit and vegetable intake and urinary levels of 3-indoxylsulfate. However, it is not possible to conclude to a possible mediation role of the indole produced by the gut microbiota from tryptophan, since there was no relationship between 3-indoxylsulfate and recurrent depressive symptoms.


Asunto(s)
Depresión , Verduras , Estudios de Casos y Controles , Depresión/epidemiología , Dieta , Femenino , Frutas , Humanos , Indicán
17.
Front Behav Neurosci ; 14: 581296, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33312120

RESUMEN

A role of the gut microbiota in psychiatric disorders is supported by a growing body of literature. The effects of a probiotic mixture of four bacterial strains were studied in two models of anxiety and depression, naturally stress-sensitive Fischer rats and Long Evans rats subjected to maternal deprivation. Rats chronically received either the probiotic mixture (1.109 CFU/day) or the vehicle. Anxiety- and depressive-like behaviors were evaluated in several tests. Brain monoamine levels and gut RNA expression of tight junction proteins (Tjp) and inflammatory markers were quantified. The gut microbiota was analyzed in feces by 16S rRNA gene sequencing. Untargeted metabolite analysis reflecting primary metabolism was performed in the cecal content and in serum. Fischer rats treated with the probiotic mixture manifested a decrease in anxiety-like behaviors, in the immobility time in the forced swimming test, as well as in levels of dopamine and its major metabolites, and those of serotonin metabolites in the hippocampus and striatum. In maternally deprived Long Evans rats treated with the probiotic mixture, the number of entries into the central area in the open-field test was increased, reflecting an anxiolytic effect. The probiotic mixture increased Tjp1 and decreased Ifnγ mRNA levels in the ileum of maternally deprived rats. In both models, probiotic supplementation changed the proportions of several Operational Taxonomic Units (OTU) in the gut microbiota, and the levels of certain cecal and serum metabolites were correlated with behavioral changes. Chronic administration of the tested probiotic mixture can therefore beneficially affect anxiety- and depressive-like behaviors in rats, possibly owing to changes in the levels of certain metabolites, such as 21-deoxycortisol, and changes in brain monoamines.

18.
Brain Sci ; 10(10)2020 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-33081368

RESUMEN

Autism Spectrum Disorder (ASD) affects approximately 1 child in 54, with a 35-fold increase since 1960. Selected studies suggest that part of the recent increase in prevalence is likely attributable to an improved awareness and recognition, and changes in clinical practice or service availability. However, this is not sufficient to explain this epidemiological phenomenon. Research points to a possible link between ASD and intestinal microbiota because many children with ASD display gastro-intestinal problems. Current large-scale datasets of ASD are limited in their ability to provide mechanistic insight into ASD because they are predominantly cross-sectional studies that do not allow evaluation of perspective associations between early life microbiota composition/function and later ASD diagnoses. Here we describe GEMMA (Genome, Environment, Microbiome and Metabolome in Autism), a prospective study supported by the European Commission, that follows at-risk infants from birth to identify potential biomarker predictors of ASD development followed by validation on large multi-omics datasets. The project includes clinical (observational and interventional trials) and pre-clinical studies in humanized murine models (fecal transfer from ASD probands) and in vitro colon models. This will support the progress of a microbiome-wide association study (of human participants) to identify prognostic microbiome signatures and metabolic pathways underlying mechanisms for ASD progression and severity and potential treatment response.

19.
Microorganisms ; 8(9)2020 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-32906656

RESUMEN

Autism spectrum disorder (ASD) is a neurodevelopmental disorder affecting 1 in 160 people in the world. Although there is a strong genetic heritability to ASD, it is now accepted that environmental factors can play a role in its onset. As the prevalence of gastrointestinal (GI) symptoms is four-times higher in ASD patients, the potential implication of the gut microbiota in this disorder is being increasingly studied. A disturbed microbiota composition has been demonstrated in ASD patients, accompanied by altered production of bacterial metabolites. Clinical studies as well as preclinical studies conducted in rodents have started to investigate the physiological functions that gut microbiota might disturb and thus underlie the pathophysiology of ASD. The first data support an involvement of the immune system and tryptophan metabolism, both in the gut and central nervous system. In addition, a few clinical studies and a larger number of preclinical studies found that modulation of the microbiota through antibiotic and probiotic treatments, or fecal microbiota transplantation, could improve behavior. Although the understanding of the role of the gut microbiota in the physiopathology of ASD is only in its early stages, the data gathered in this review highlight that this role should be taken in consideration.

20.
Psychoneuroendocrinology ; 119: 104750, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32569990

RESUMEN

BACKGROUND AND AIMS: The gut microbiota produces metabolites that are an integral part of the metabolome and, as such, of the host physiology. Changes in gut microbiota metabolism could therefore contribute to pathophysiological processes. We showed previously that a chronic and moderate overproduction of indole from tryptophan in male individuals of the highly stress-sensitive F344 rat strain induced anxiety-like and helplessness behaviors. The aim of the present study was to extend the scope of these findings by investigating whether emotional behaviors of male mice that are moderately stress-sensitive but chronically exposed to environmental stressors would also be affected by indole. METHODS: We colonized germ-free male C3H/HeN mice with a wild-type indole-producing Escherichia coli strain, or with the non-indole producing mutant. Gnotobiotic mice were subjected to an unpredictable chronic mild stress procedure, then to a set of tests aimed at assessing anxiety-like (novelty and elevated plus maze tests) and depression-like behaviors (coat state, splash, nesting, tail suspension and sucrose tests). Results of the individual tests were aggregated into a common z-score to estimate the overall emotional response to chronic mild stress and chronic indole production. We also carried out biochemical and molecular analyses in gut mucosa, plasma, brain hippocampus and striatum, and adrenal glands, to examine biological correlates that are usually associated with stress, anxiety and depression. RESULTS: Chronic mild stress caused coat state degradation and anhedonia in both indole-producing and non-indole producing mice, but it did not influence behaviors in the other tests. Chronic indole production did not influence mice behavior when tests were considered individually, but it increased the overall emotionality z-score, specifically in mice under chronic mild stress. Interestingly, in the same mice, indole induced a dramatic increase of the expression of the adrenomedullary Pnmt gene, which is involved in catecholamine biosynthesis. By contrast, systemic tryptophan bioavailability, brain serotonin and dopamine levels and turnover, as well as expression of gut and brain genes involved in cytokine production and tryptophan metabolism along the serotonin and kynurenine pathways, remained similar in all mice. CONCLUSIONS: Chronic indole production by the gut microbiota increased the vulnerability of male mice to the adverse effects of chronic mild stress on emotional behaviors. It also targeted catecholamine biosynthetic pathway of the adrenal medulla, which plays a pivotal role in body's physiological adaptation to stressful events. Future studies will aim to investigate the action mechanisms responsible for these effects.


Asunto(s)
Médula Suprarrenal/efectos de los fármacos , Emociones/efectos de los fármacos , Microbioma Gastrointestinal/fisiología , Indoles/farmacología , Estrés Psicológico , Médula Suprarrenal/fisiología , Animales , Conducta Animal/efectos de los fármacos , Enfermedad Crónica , Indoles/metabolismo , Masculino , Ratones , Ratones Endogámicos C3H , Estrés Psicológico/metabolismo , Estrés Psicológico/microbiología , Estrés Psicológico/patología , Estrés Psicológico/psicología , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA