Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 14274, 2024 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-38902286

RESUMEN

Gastroenteritis infection is a major public health concern worldwide, especially in developing countries due to the high annual mortality rate. The antimicrobial and antibiofilm activity of human mesenchymal stem cell-derived conditioned medium (hMSCsCM) encapsulated in chitosan nanoparticles (ChNPs) was studied in vitro and in vivo against common gastroenteritis bacteria. The synthesized ChNPs were characterized using Zeta potential, scanning electron microscopy (SEM), and dynamic light scattering (DLS) techniques. HMSC-derived conditioned medium incorporated into chitosan NPs (hMSCsCM-ChNPs) composite was fabricated by chitosan nanoparticles loaded with BM-MSCs (positive for CD73 and CD44 markers). The antimicrobial and antibiofilm activity of composite was investigated against four common gastroenteritis bacteria (Campylobacter jejuni ATCC29428, Salmonella enteritidis ATCC13076, Shigella dysenteriae PTCC1188, and E. coli ATCC25922) in-vitro and in-vivo. Majority of ChNPs (96%) had an average particle size of 329 nm with zeta potential 7.08 mV. The SEM images confirmed the synthesis of spherical shape for ChNPs and a near-spherical shape for hMSCsCM-ChNPs. Entrapment efficiency of hMSCsCM-ChNPs was 75%. Kinetic profiling revealed that the release rate of mesenchymal stem cells was reduced following the pH reduction. The antibacterial activity of hMSCsCM-ChNPs was significantly greater than that of hMSCsCM and ChNPs at dilutions of 1:2 to 1:8 (P < 0.05) against four common gastroenteritis bacteria. The number of bacteria present decreased more significantly in the group of mice treated with the hMSCsCM-ChNPs composite than in the groups treated with hMSCsCM and ChNPs. The antibacterial activity of hMSCsCM against common gastroenteritis bacteria in an in vivo assay decreased from > 106 CFU/ml to approximately (102 to 10) after 72 h. Both in vitro and in vivo assays demonstrated the antimicrobial and antibiofilm activities of ChNPs at a concentration of 0.1% and hMSCsCM at a concentration of 1000 µg/ml to be inferior to that of hMSCsCM-ChNPs (1000 µg/ml + 0.1%) composite. These results indicated the existence of a synergistic effect between ChNPs and hMSCsCM. The designed composite exhibited notable antibiofilm and antibacterial activities, demonstrating optimal release in simulated intestinal lumen conditions. The utilization of this composite is proposed as a novel treatment approach to combat gastroenteritis bacteria in the context of more challenging infections.


Asunto(s)
Antibacterianos , Quitosano , Gastroenteritis , Células Madre Mesenquimatosas , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/efectos de los fármacos , Quitosano/química , Quitosano/farmacología , Humanos , Animales , Medios de Cultivo Condicionados/farmacología , Ratones , Antibacterianos/farmacología , Antibacterianos/química , Gastroenteritis/microbiología , Pruebas de Sensibilidad Microbiana , Nanopartículas/química , Campylobacter jejuni/efectos de los fármacos , Salmonella enteritidis/efectos de los fármacos , Biopelículas/efectos de los fármacos , Escherichia coli/efectos de los fármacos , Shigella dysenteriae/efectos de los fármacos , Nanoestructuras/química , Tamaño de la Partícula
2.
Jundishapur J Microbiol ; 9(3): e30018, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-27217921

RESUMEN

BACKGROUND: During the past several years, nontuberculous mycobacteria (NTM) have been reported as some of the most important agents of infection in immunocompromised patients. OBJECTIVES: The aim of this study was to evaluate the ciprofloxacin susceptibility of clinical and environmental NTM species isolated from Isfahan province, Iran, using the agar dilution method, and to perform an analysis of gyrA gene-related ciprofloxacin resistance. MATERIALS AND METHODS: A total of 41 clinical and environmental isolates of NTM were identified by conventional and multiplex PCR techniques. The isolates were separated out of water, blood, abscess, and bronchial samples. The susceptibility of the isolates to 1 µg/mL, 2 µg/mL and 4 µg/mL of ciprofloxacin concentrations was determined by the agar dilution method according to CLSI guidelines. A 120-bp area of the gyrA gene was amplified, and PCR-SSCP templates were defined using polyacrylamide gel electrophoresis. The 120-bp of gyrA amplicons with different PCR-SSCP patterns were sequenced. RESULTS: The frequency of the identified isolates was as follows: Mycobacterium fortuitum, 27 cases; M. gordonae, 10 cases; M. smegmatis, one case; M. conceptionense, one case; and M. abscessus, two cases. All isolates except for M. abscessus were sensitive to all three concentrations of ciprofloxacin. The PCR-SSCP pattern of the gyrA gene of resistant M. abscessus isolates showed four different bands. The gyrA sequencing of resistant M. abscessus isolates showed 12 alterations in nucleotides compared to the M. abscessus ATCC 19977 resistant strain; however, the amino acid sequences were similar. CONCLUSIONS: This study demonstrated the specificity and sensitivity of the PCR-SSCP method for finding mutations in the gyrA gene. Due to the sensitivity of most isolates to ciprofloxacin, this antibiotic should be considered an appropriate drug for the treatment of related diseases.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA