Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
Science ; 376(6595): 880-884, 2022 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-35587980

RESUMEN

Systems immunology lacks a framework with which to derive theoretical understanding from high-dimensional datasets. We combined a robotic platform with machine learning to experimentally measure and theoretically model CD8+ T cell activation. High-dimensional cytokine dynamics could be compressed onto a low-dimensional latent space in an antigen-specific manner (so-called "antigen encoding"). We used antigen encoding to model and reconstruct patterns of T cell immune activation. The model delineated six classes of antigens eliciting distinct T cell responses. We generalized antigen encoding to multiple immune settings, including drug perturbations and activation of chimeric antigen receptor T cells. Such universal antigen encoding for T cell activation may enable further modeling of immune responses and their rational manipulation to optimize immunotherapies.


Asunto(s)
Antígenos , Linfocitos T CD8-positivos , Citocinas , Activación de Linfocitos , Modelos Inmunológicos , Antígenos/inmunología , Linfocitos T CD8-positivos/inmunología , Humanos , Inmunoterapia , Aprendizaje Automático , Receptores de Antígenos de Linfocitos T/metabolismo
2.
Cell Rep ; 37(9): 110064, 2021 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-34852223

RESUMEN

CD4+ T cells have a remarkable potential to differentiate into diverse effector lineages following activation. Here, we probe the heterogeneity present among naive CD4+ T cells before encountering their cognate antigen to ask whether their effector potential is modulated by pre-existing transcriptional and chromatin landscape differences. Single-cell RNA sequencing shows that key drivers of variability are genes involved in T cell receptor (TCR) signaling. Using CD5 expression as a readout of the strength of tonic TCR interactions with self-peptide MHC, and sorting on the ends of this self-reactivity spectrum, we find that pre-existing transcriptional differences among naive CD4+ T cells impact follicular helper T (TFH) cell versus non-TFH effector lineage choice. Moreover, our data implicate TCR signal strength during thymic development in establishing differences in naive CD4+ T cell chromatin landscapes that ultimately shape their effector potential.


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Diferenciación Celular , Cromatina/fisiología , Activación de Linfocitos/inmunología , Coriomeningitis Linfocítica/inmunología , Receptores de Antígenos de Linfocitos T/inmunología , Linfocitos T Colaboradores-Inductores/inmunología , Animales , Linfocitos T CD4-Positivos/metabolismo , Femenino , Perfilación de la Expresión Génica , Coriomeningitis Linfocítica/genética , Coriomeningitis Linfocítica/metabolismo , Coriomeningitis Linfocítica/virología , Virus de la Coriomeningitis Linfocítica/inmunología , Masculino , Ratones Endogámicos C57BL , Receptores de Antígenos de Linfocitos T/metabolismo
3.
Biophys J ; 113(8): 1893-1906, 2017 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-29045882

RESUMEN

Complex mathematical models of interaction networks are routinely used for prediction in systems biology. However, it is difficult to reconcile network complexities with a formal understanding of their behavior. Here, we propose a simple procedure (called ϕ¯) to reduce biological models to functional submodules, using statistical mechanics of complex systems combined with a fitness-based approach inspired by in silico evolution. The ϕ¯ algorithm works by putting parameters or combination of parameters to some asymptotic limit, while keeping (or slightly improving) the model performance, and requires parameter symmetry breaking for more complex models. We illustrate ϕ¯ on biochemical adaptation and on different models of immune recognition by T cells. An intractable model of immune recognition with close to a hundred individual transition rates is reduced to a simple two-parameter model. The ϕ¯ algorithm extracts three different mechanisms for early immune recognition, and automatically discovers similar functional modules in different models of the same process, allowing for model classification and comparison. Our procedure can be applied to biological networks based on rate equations using a fitness function that quantifies phenotypic performance.


Asunto(s)
Algoritmos , Modelos Biológicos , Adaptación Fisiológica , Animales , Simulación por Computador , Modelos Estadísticos , Linfocitos T/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA