RESUMEN
Rationale: Quantitative interstitial abnormalities (QIAs) are a computed tomography (CT) measure of early parenchymal lung disease associated with worse clinical outcomes, including exercise capacity and symptoms. The presence of pulmonary vasculopathy in QIAs and its role in the QIA-outcome relationship is unknown. Objectives: To quantify radiographic pulmonary vasculopathy in QIAs and determine whether this vasculopathy mediates the QIA-outcome relationship. Methods: Ever-smokers with QIAs, outcomes, and pulmonary vascular mediator data were identified from the Genetic Epidemiology of COPD (COPDGene) study cohort. CT-based vascular mediators were right ventricle-to-left ventricle ratio, pulmonary artery-to-aorta ratio, and preacinar intraparenchymal arterial dilation (pulmonary artery volume, 5-20 mm2 in cross-sectional area, normalized to total arterial volume). Outcomes were 6-minute walk distance and a modified Medical Council Research Council Dyspnea Scale score of 2 or higher. Adjusted causal mediation analyses were used to determine whether the pulmonary vasculature mediated the QIA effect on outcomes. Associations of preacinar arterial dilation with select plasma biomarkers of pulmonary vascular dysfunction were examined. Measurements and Main Results: Among 8,200 participants, QIA burden correlated positively with vascular damage measures, including preacinar arterial dilation. Preacinar arterial dilation mediated 79.6% of the detrimental impact of QIA on 6-minute walk distance (56.2-100%; P < 0.001). Pulmonary artery-to-aorta ratio was a weak mediator, and right ventricle-to-left ventricle ratio was a suppressor. Similar results were observed in the relationship between QIA and modified Medical Council Research Council dyspnea score. Preacinar arterial dilation correlated with increased pulmonary vascular dysfunction biomarker levels, including angiopoietin-2 and N-terminal brain natriuretic peptide. Conclusions: Parenchymal QIAs deleteriously impact outcomes primarily through pulmonary vasculopathy. Preacinar arterial dilation may be a novel marker of pulmonary vasculopathy in QIAs.
Asunto(s)
Arteria Pulmonar , Enfermedad Pulmonar Obstructiva Crónica , Tomografía Computarizada por Rayos X , Humanos , Femenino , Masculino , Persona de Mediana Edad , Anciano , Arteria Pulmonar/fisiopatología , Arteria Pulmonar/diagnóstico por imagen , Enfermedad Pulmonar Obstructiva Crónica/fisiopatología , Enfermedad Pulmonar Obstructiva Crónica/genética , Estudios de Cohortes , Enfermedades Pulmonares Intersticiales/fisiopatología , Enfermedades Pulmonares Intersticiales/genética , Enfermedades Pulmonares Intersticiales/diagnóstico por imagen , Tolerancia al EjercicioAsunto(s)
Hipertensión Pulmonar , Neumonías Intersticiales Idiopáticas , Humanos , Hipertensión Pulmonar/fisiopatología , Hipertensión Pulmonar/etiología , Hipertensión Pulmonar/diagnóstico por imagen , Hipertensión Pulmonar/complicaciones , Masculino , Femenino , Persona de Mediana Edad , Neumonías Intersticiales Idiopáticas/complicaciones , Neumonías Intersticiales Idiopáticas/diagnóstico por imagen , Neumonías Intersticiales Idiopáticas/fisiopatología , Anciano , Pulmón/diagnóstico por imagen , Pulmón/irrigación sanguínea , Pulmón/fisiopatologíaRESUMEN
Rationale: The mean pulmonary arterial wedge pressure (mPAWP) is the critical hemodynamic factor differentiating group 1 pulmonary arterial hypertension (PAH) from group 2 pulmonary hypertension associated with left heart disease. Despite the discrepancy between the mPAWP upper physiologic normal and current PAH definitions, the implications of the initial mPAWP for PAH clinical trajectory are poorly understood. Objectives: To model longitudinal mPAWP trajectories in PAH over 10 years and examine the clinical and hemodynamic factors associated with trajectory membership. Methods: Adult patients with PAH with two or more right heart catheterizations were identified from a multiinstitution healthcare system in eastern Massachusetts. mPAWP trajectories were constructed via group-based trajectory modeling. Feature selection was performed in least absolute shrinkage and selection operator regression. Logistic regression was used to assess associations between trajectory membership, baseline characteristics, and transplant-free survival. Measurements and Main Results: Among 301 patients with PAH, there were two distinct mPAWP trajectories, termed "mPAWP-high" (n = 71; 23.6%) and "mPAWP-low" (n = 230; 76.4%), based on the ultimate mPAWP value. Initial mPAWP clustered around median 12 mm Hg (interquartile range [IQR], 8-14 mm Hg) in the mPAWP-high and 9 mm Hg (IQR, 6-11 mm Hg) in the mPAWP-low trajectories (P < 0.001). After feature selection, initial mPAWP ⩾12 mm Hg predicted an mPAWP-high trajectory (odds ratio, 3.2; 95% confidence interval, 1.4-6.1; P = 0.0006). An mPAWP-high trajectory was associated with shorter transplant-free survival (vs. mPAWP-low, median, 7.8 vs. 11.3 yr; log-rank P = 0.017; age-adjusted P = 0.217). Conclusions: Over 10 years, the mPAWP followed two distinct trajectories, with 25% evolving into group 2 pulmonary hypertension physiology. Using routine baseline data, longitudinal mPAWP trajectory could be predicted accurately, with initial mPAWP ⩾12 mm Hg as one of the strongest predictors.
Asunto(s)
Hipertensión Pulmonar , Hipertensión Arterial Pulmonar , Adulto , Humanos , Presión Esfenoidal Pulmonar/fisiología , Estudios Retrospectivos , Hipertensión Pulmonar Primaria FamiliarRESUMEN
Pulmonary arterial hypertension associated with schistosomiasis (SchPAH) and pulmonary arterial hypertension associated with portal hypertension (PoPAH) are lung diseases that develop in the presence of liver diseases. However, mechanistic pathways by which the underlying liver conditions and other drivers contribute to the development and progression of pulmonary arterial hypertension (PAH) are unclear for both etiologies. In turn, these unknowns limit certainty of strategies to prevent, diagnose, and reverse the resultant PAH. Here we consider specific mechanisms that contribute to SchPAH and PoPAH, identifying those that may be shared and those that appear to be unique to each etiology, in the hope that this exploration will both highlight known causal drivers and identify knowledge gaps appropriate for future research. Overall, the key pathophysiologic differences that we identify between SchPAH and PoPAH suggest that they are not variants of a single condition.
Asunto(s)
Adenocarcinoma del Pulmón , Adenocarcinoma , Neoplasias Pulmonares , Humanos , Adenocarcinoma del Pulmón/cirugía , Adenocarcinoma/diagnóstico por imagen , Adenocarcinoma/cirugía , Neoplasias Pulmonares/diagnóstico por imagen , Neoplasias Pulmonares/cirugía , Neoplasias Pulmonares/patología , Recurrencia Local de Neoplasia/patología , Estudios Retrospectivos , Pronóstico , Estadificación de NeoplasiasRESUMEN
The factors associated with persistent hypoxemia after pulmonary embolus (PE) are not well understood. Predicting the need for oxygen post discharge at the time of diagnosis using available CT imaging will enable better discharge planning. To examine the relationship between CT derived imaging markers (automated computation of arterial small vessel fraction, pulmonary artery diameter to aortic diameter ratio (PA:A), right to left ventricular diameter ratio (RV:LV) and new oxygen requirement at the time of discharge in patients diagnosed with acute intermediate-risk PE. CT measurements were obtained in a retrospective cohort of patients with acute-intermediate risk PE admitted to Brigham and Women's Hospital between 2009 and 2017. Twenty one patients without a history of lung disease requiring home oxygen and 682 patients without discharge oxygen requirements were identified. There was an increased median PA:A ratio (0.98 vs. 0.92, p = 0.02) and arterial small vessel fraction (0.32 vs. 0.39, p = 0.001) in the oxygen-requiring group], but no difference in the median RV:LV ratio (1.20 vs. 1.20, p = 0.74). Being in the upper quantile for the arterial small vessel fraction was associated with decreased odds of oxygen requirement (OR 0.30 [0.10-0.78], p = 0.02). Loss of arterial small vessel volume as measured by arterial small vessel fraction and an increase in the PA:A ratio at the time of diagnosis were associated with the presence of persistent hypoxemia on discharge in acute intermediate-risk PE.
Asunto(s)
Embolia Pulmonar , Disfunción Ventricular Derecha , Humanos , Femenino , Tomografía Computarizada por Rayos X/métodos , Estudios Retrospectivos , Cuidados Posteriores , Valor Predictivo de las Pruebas , Alta del Paciente , Hipoxia , Oxígeno , Enfermedad AgudaRESUMEN
BACKGROUND: The risk factors and clinical outcomes of quantitative interstitial abnormality progression over time have not been characterized. RESEARCH QUESTIONS: What are the associations of quantitative interstitial abnormality progression with lung function, exercise capacity, and mortality? What are the demographic and genetic risk factors for quantitative interstitial abnormality progression? STUDY DESIGN AND METHODS: Quantitative interstitial abnormality progression between visits 1 and 2 was assessed from 4,635 participants in the Genetic Epidemiology of COPD (COPDGene) cohort and 1,307 participants in the Pittsburgh Lung Screening Study (PLuSS) cohort. We used multivariable linear regression to determine the risk factors for progression and the longitudinal associations between progression and FVC and 6-min walk distance, and Cox regression models for the association with mortality. RESULTS: Age at enrollment, female sex, current smoking status, and the MUC5B minor allele were associated with quantitative interstitial abnormality progression. Each percent annual increase in quantitative interstitial abnormalities was associated with annual declines in FVC (COPDGene: 8.5 mL/y; 95% CI, 4.7-12.4 mL/y; P < .001; PLuSS: 9.5 mL/y; 95% CI, 3.7-15.4 mL/y; P = .001) and 6-min walk distance, and increased mortality (COPDGene: hazard ratio, 1.69; 95% CI, 1.34-2.12; P < .001; PLuSS: hazard ratio, 1.28; 95% CI, 1.10-1.49; P = .001). INTERPRETATION: The objective, longitudinal measurement of quantitative interstitial abnormalities may help identify people at greatest risk for adverse events and most likely to benefit from early intervention.
Asunto(s)
Enfermedad Pulmonar Obstructiva Crónica , Tomografía Computarizada por Rayos X , Humanos , Femenino , Epidemiología Molecular , Modelos de Riesgos Proporcionales , Pulmón , Enfermedad Pulmonar Obstructiva Crónica/diagnóstico , Enfermedad Pulmonar Obstructiva Crónica/epidemiología , Enfermedad Pulmonar Obstructiva Crónica/genéticaRESUMEN
Loss of small pulmonary arteries measured as the ratio of blood vessel volume in arteries <5 mm2 in cross-section to total arterial blood vessel volume (BV5a/TBVa), with lower values indicating more pruning, was associated with 5-yr progressing CT-derived bronchiectasis in smokers (Odds Ratio (OR) [95% Confidence interval], 1.28 [1.07-1.53] per 5% lower BV5a/TBVa, P = 0.007). Corresponding results in smokers with COPD were: OR 1.45 [1.11-1.89] per 5% lower BV5a/TBVa, P = 0.007. The results support a vascular factor for structural progression of bronchiectasis.
Asunto(s)
Bronquiectasia , Hipertensión Pulmonar , Enfermedad Pulmonar Obstructiva Crónica , Bronquiectasia/diagnóstico por imagen , Bronquiectasia/etiología , Humanos , Arteria Pulmonar/diagnóstico por imagen , Enfermedad Pulmonar Obstructiva Crónica/diagnóstico por imagen , Fumadores , Tomografía Computarizada por Rayos XRESUMEN
BACKGROUND: Cardiorespiratory fitness is not limited by pulmonary mechanical reasons in the majority of adults. However, the degree to which lung function contributes to exercise response patterns among ostensibly healthy individuals remains unclear. METHODS: We examined 2314 Framingham Heart Study participants who underwent cardiopulmonary exercise testing (CPET) and pulmonary function testing. We investigated the association of forced expiratory volume in 1â s (FEV1), forced vital capacity (FVC), FEV1/FVC and diffusing capacity of the lung for carbon monoxide (D LCO) with the primary outcome of peak oxygen uptake (V'O2 ) along with other CPET parameters using multivariable linear regression. Finally, we investigated the association of total and peripheral pulmonary blood vessel volume with peak V'O2 . RESULTS: We found lower FEV1, FVC and D LCO were associated with lower peak V'O2 . For example, a 1â L lower FEV1 and FVC was associated with a 7.1% (95% CI 5.1-9.1%) and 6.0% (95% CI 4.3-7.7%) lower peak V'O2 , respectively. By contrast, FEV1/FVC was not associated with peak V'O2 . Lower lung function was associated with lower oxygen uptake efficiency slope, oxygen pulse slope, V'O2 at anaerobic threshold (AT), minute ventilation (V'E) at AT and breathing reserve. In addition, lower total and peripheral pulmonary blood vessel volume were associated with lower peak V'O2 . CONCLUSIONS: In a large, community-based cohort of adults, we found lower FEV1, FVC and D LCO were associated with lower exercise capacity, as well as oxygen uptake efficiency slope and ventilatory efficiency. In addition, lower total and peripheral pulmonary blood vessel volume were associated with lower peak V'O2 . These findings underscore the importance of lung function and blood vessel volume as contributors to overall exercise capacity.
Asunto(s)
Capacidad Cardiovascular , Adulto , Prueba de Esfuerzo , Tolerancia al Ejercicio/fisiología , Humanos , Pulmón , Oxígeno , Consumo de Oxígeno/fisiologíaRESUMEN
Pulmonary hypertension is characterized histologically by intimal and medial thickening in the small pulmonary arteries, eventually resulting in vascular "pruning." Computed tomography (CT)-based quantification of pruning is associated with clinical measures of pulmonary hypertension, but it is not established whether CT-based pruning correlates with histologic arterial remodeling. Our sample consisted of 138 patients who underwent resection for early-stage lung adenocarcinoma. From histologic sections, we identified small pulmonary arteries and measured the relative area comprising the intima and media (VWA%), with higher VWA% representing greater histologic remodeling. From pre-operative CTs, we used image analysis algorithms to calculate the small vessel volume fraction (BV5/TBV) as a CT-based indicator of pruning (lower BV5/TBV represents greater pruning). We investigated relationships of CT pruning and histologic remodeling using Pearson correlation, simple linear regression, and multivariable regression with adjustment for age, sex, height, weight, smoking status, and total pack-years. We also tested for effect modification by sex and smoking status. In primary models, more severe CT pruning was associated with greater histologic remodeling. The Pearson correlation coefficient between BV5/TBV and VWA% was -0.41, and in linear regression models, VWA% was 3.13% higher (95% CI: 1.95-4.31%, p < 0.0001) per standard deviation lower BV5/TBV. This association persisted after multivariable adjustment. We found no evidence that these relationships differed by sex or smoking status. Among individuals who underwent resection for lung adenocarcinoma, more severe CT-based vascular pruning was associated with greater histologic arterial remodeling. These findings suggest CT imaging may be a non-invasive indicator of pulmonary vascular pathology.
RESUMEN
There is a growing body of evidence that hypercoagulability is present in stable COPD, involves changes in multiple coagulation factors, and is not simply associated with major causes of inflammation and thrombosis https://bit.ly/3F5NnfN.
RESUMEN
In this conference paper, we review the 2020 American Thoracic Society International Conference session titled, "What's New in Pulmonary Hypertension Clinical Research: Lessons from the Best Abstracts". This virtual mini-symposium took place on 21 October 2020, in lieu of the annual in-person ATS International Conference which was cancelled due to the COVID-19 pandemic. Seven clinical research abstracts were selected for presentation in the session, which encompassed five major themes: (1) standardizing diagnosis and management of pulmonary hypertension, (2) improving risk assessment in pulmonary arterial hypertension, (3) evaluating biomarkers of disease activity, (4) understanding metabolic dysregulation across the spectrum of pulmonary hypertension, and (5) advancing knowledge in chronic thromboembolic pulmonary hypertension. Focusing on these five thematic contexts, we review the current state of knowledge, summarize presented research abstracts, appraise their significance and limitations, and then discuss relevant future directions in pulmonary hypertension clinical research.
RESUMEN
BACKGROUND: In acute pulmonary embolism, chest computed tomography angiography derived metrics, such as the right ventricle (RV): left ventricle ratio are routinely used for risk stratification. Paucity of intraparenchymal blood vessels has previously been described, but their association with clinical biomarkers and outcomes has not been studied. We sought to determine if small vascular volumes measured on computed tomography scans were associated with an abnormal RV on echocardiography and mortality. We hypothesized that decreased small venous volume would be associated with greater RV dysfunction and increased mortality. METHODS: A retrospective cohort of patients with intermediate risk pulmonary embolism admitted to Brigham and Women's Hospital between 2009 and 2017 was assembled, and clinical and radiographic data were obtained. We performed 3-dimensional reconstructions of vasculature to assess intraparenchymal vascular volumes. Statistical analyses were performed using multivariable regression and cox proportional hazards models, adjusting for age, sex, lung volume, and small arterial volume. RESULTS: Seven hundred twenty-two subjects were identified of whom 573 had documented echocardiography. A 50% reduction in small venous volume was associated with an increased risk of RV dilation (relative risk: 1.38 [95% CI, 1.18-1.63], P<0.001), RV dysfunction (relative risk: 1.62 [95% CI, 1.36-1.95], P<0.001), and RV strain (relative risk: 1.67 [95% CI, 1.37-2.04], P<0.001); increased cardiac biomarkers, and higher 30-day and 90-day mortality (hazard ratio: 2.50 [95% CI, 1.33-4.67], P=0.004 and hazard ratio: 1.84 [95% CI, 1.11-3.04], P=0.019, respectively). CONCLUSIONS: Loss of small venous volume quantified from computed tomography angiography is associated with increased risk of abnormal RV on echocardiography, abnormal cardiac biomarkers, and higher risk of 30- and 90-day mortality. Small venous volume may be a useful marker for assessing disease severity in acute pulmonary embolism.
Asunto(s)
Ventrículos Cardíacos/diagnóstico por imagen , Arteria Pulmonar/diagnóstico por imagen , Embolia Pulmonar/mortalidad , Medición de Riesgo/métodos , Disfunción Ventricular Derecha/fisiopatología , Enfermedad Aguda , Anciano , Angiografía por Tomografía Computarizada , Ecocardiografía/métodos , Femenino , Estudios de Seguimiento , Ventrículos Cardíacos/fisiopatología , Humanos , Masculino , Persona de Mediana Edad , Pronóstico , Arteria Pulmonar/fisiopatología , Embolia Pulmonar/complicaciones , Embolia Pulmonar/fisiopatología , Estudios Retrospectivos , Índice de Severidad de la Enfermedad , Tasa de Supervivencia/tendencias , Estados Unidos/epidemiología , Disfunción Ventricular Derecha/diagnóstico , Disfunción Ventricular Derecha/etiologíaAsunto(s)
Enfermedades Pulmonares Obstructivas/etiología , Hipertensión Arterial Pulmonar/fisiopatología , Adulto , Progresión de la Enfermedad , Femenino , Humanos , Pulmón/diagnóstico por imagen , Pulmón/patología , Pulmón/fisiopatología , Enfermedades Pulmonares Obstructivas/diagnóstico por imagen , Enfermedades Pulmonares Obstructivas/patología , Enfermedades Pulmonares Obstructivas/fisiopatología , Masculino , Persona de Mediana Edad , Hipertensión Arterial Pulmonar/diagnóstico por imagen , Hipertensión Arterial Pulmonar/patología , Pruebas de Función Respiratoria , Estudios Retrospectivos , Tomografía Computarizada por Rayos XRESUMEN
BACKGROUND: Pulmonary hypertension is a heterogeneous disease, and a significant portion of patients at risk for it have CT imaging available. Advanced automated processing techniques could be leveraged for early detection, screening, and development of quantitative phenotypes. Pruning and vascular tortuosity have been previously described in pulmonary arterial hypertension (PAH), but the extent of these phenomena in arterial vs venous pulmonary vasculature and in exercise pulmonary hypertension (ePH) have not been described. RESEARCH QUESTION: What are the arterial and venous manifestations of pruning and vascular tortuosity using CT imaging in PAH, and do they also occur in ePH? STUDY DESIGN AND METHODS: A cohort of patients with PAH and ePH and control subjects with available CT angiograms were retrospectively identified to examine the differential arterial and venous presence of pruning and tortuosity in patients with precapillary pulmonary hypertension not confounded by lung or thromboembolic disease. The pulmonary vasculature was reconstructed, and an artificial intelligence method was used to separate arteries and veins and to compute arterial and venous vascular volumes and tortuosity. RESULTS: A total of 42 patients with PAH, 12 patients with ePH, and 37 control subjects were identified. There was relatively lower (median [interquartile range]) arterial small vessel volume in subjects with PAH (PAH 14.7 [11.7-16.5; P < .0001]) vs control subjects (16.9 [15.6-19.2]) and venous small vessel volume in subjects with PAH and ePH (PAH 8.0 [6.5-9.6; P < .0001]; ePH, 7.8 [7.5-11.4; P = .004]) vs control subjects (11.5 [10.6-12.2]). Higher large arterial volume, however, was only observed in the pulmonary arteries (PAH 17.1 [13.6-23.4; P < .0001] vs control subjects 11.4 [8.1-15.4]). Similarly, tortuosity was higher in the pulmonary arteries in the PAH group (PAH 3.5 [3.3-3.6; P = .0002] vs control 3.2 [3.2-3.3]). INTERPRETATION: Lower small distal pulmonary vascular volume, higher proximal arterial volume, and higher arterial tortuosity were observed in PAH. These can be quantified by using automated techniques from clinically acquired CT scans of patients with ePH and resting PAH.
Asunto(s)
Hipertensión Arterial Pulmonar/diagnóstico por imagen , Tomografía Computarizada por Rayos X , Adulto , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Hipertensión Arterial Pulmonar/fisiopatología , Arteria Pulmonar/diagnóstico por imagen , Arteria Pulmonar/fisiopatología , Venas Pulmonares/diagnóstico por imagen , Venas Pulmonares/fisiopatología , Pruebas de Función Respiratoria , Estudios RetrospectivosRESUMEN
Background The relationship between emphysema progression and long-term outcomes is unclear. Purpose To determine the relationship between emphysema progression at CT and mortality among participants with emphysema. Materials and Methods In a secondary analysis of two prospective observational studies, COPDGene (clinicaltrials.gov, NCT00608764) and Evaluation of Chronic Obstructive Pulmonary Disease Longitudinally to Identify Predictive Surrogate End-points (ECLIPSE; clinicaltrials.gov, NCT00292552), emphysema was measured at CT at two points by using the volume-adjusted lung density at the 15th percentile of the lung density histogram (hereafter, lung density perc15) method. The association between emphysema progression rate and all-cause mortality was analyzed by using Cox regression adjusted for ethnicity, sex, baseline age, pack-years, and lung density, baseline and change in smoking status, forced expiratory volume in 1 second, and 6-minute walk distance. In COPDGene, respiratory mortality was analyzed by using the Fine and Gray method. Results A total of 5143 participants (2613 men [51%]; mean age, 60 years ± 9 [standard deviation]) in COPDGene and 1549 participants (973 men [63%]; mean age, 62 years ± 8) in ECLIPSE were evaluated, of which 2097 (40.8%) and 1179 (76.1%) had emphysema, respectively. Baseline imaging was performed between January 2008 and December 2010 for COPDGene and January 2006 and August 2007 for ECLIPSE. Follow-up imaging was performed after 5.5 years ± 0.6 in COPDGene and 3.0 years ± 0.2 in ECLIPSE, and mortality was assessed over the ensuing 5 years in both. For every 1 g/L per year faster rate of decline in lung density perc15, all-cause mortality increased by 8% in COPDGene (hazard ratio [HR], 1.08; 95% CI: 1.01, 1.16; P = .03) and 6% in ECLIPSE (HR, 1.06; 95% CI: 1.00, 1.13; P = .045). In COPDGene, respiratory mortality increased by 22% (HR, 1.22; 95% CI: 1.13, 1.31; P < .001) for the same increase in the rate of change in lung density perc15. Conclusion In ever-smokers with emphysema, emphysema progression at CT was associated with increased all-cause and respiratory mortality. © RSNA, 2021 Online supplemental material is available for this article. See also the editorial by Lee and Park in this issue.
Asunto(s)
Enfisema Pulmonar/diagnóstico por imagen , Enfisema Pulmonar/mortalidad , Fumadores , Tomografía Computarizada por Rayos X/métodos , Anciano , Ensayos Clínicos como Asunto , Progresión de la Enfermedad , Femenino , Humanos , Masculino , Persona de Mediana Edad , Estados Unidos/epidemiologíaRESUMEN
Although the diagnosis of pulmonary hypertension requires invasive testing, imaging serves an important role in the screening, classification, and monitoring of patients with pulmonary vascular disease (PVD). The development of advanced imaging techniques has led to improvements in the understanding of disease pathophysiology, noninvasive assessment of hemodynamics, and stratification of patient risk. This article discusses the current role of advanced imaging and the emerging novel techniques for visualizing the lung parenchyma, mediastinum, and heart in PVD.