Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
EMBO Mol Med ; 16(6): 1284-1309, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38783166

RESUMEN

Hypoxic-ischaemic encephalopathy (HIE) arises from diminished blood flow and oxygen to the neonatal brain during labor, leading to infant mortality or severe brain damage, with a global incidence of 1.5 per 1000 live births. Glucagon-like Peptide 1 Receptor (GLP1-R) agonists, used in type 2 diabetes treatment, exhibit neuroprotective effects in various brain injury models, including HIE. In this study, we observed enhanced neurological outcomes in post-natal day 10 mice with surgically induced hypoxic-ischaemic (HI) brain injury after immediate systemic administration of exendin-4 or semaglutide. Short- and long-term assessments revealed improved neuropathology, survival rates, and locomotor function. We explored the mechanisms by which GLP1-R agonists trigger neuroprotection and reduce inflammation following oxygen-glucose deprivation and HI in neonatal mice, highlighting the upregulation of the PI3/AKT signalling pathway and increased cAMP levels. These findings shed light on the neuroprotective and anti-inflammatory effects of GLP1-R agonists in HIE, potentially extending to other neurological conditions, supporting their potential clinical use in treating infants with HIE.


Asunto(s)
Animales Recién Nacidos , Modelos Animales de Enfermedad , Hipoxia-Isquemia Encefálica , Fármacos Neuroprotectores , Animales , Hipoxia-Isquemia Encefálica/tratamiento farmacológico , Hipoxia-Isquemia Encefálica/metabolismo , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Ratones , Transducción de Señal/efectos de los fármacos , Exenatida/farmacología , Exenatida/uso terapéutico , Hipoglucemiantes/farmacología , Receptor del Péptido 1 Similar al Glucagón/metabolismo , Receptor del Péptido 1 Similar al Glucagón/agonistas , Péptidos/farmacología , Péptidos/uso terapéutico
2.
Sci Rep ; 14(1): 12393, 2024 05 29.
Artículo en Inglés | MEDLINE | ID: mdl-38811759

RESUMEN

Parkinson's disease (PD) is a progressive late-onset neurodegenerative disease leading to physical and cognitive decline. Mutations of leucine-rich repeat kinase 2 (LRRK2) are the most common genetic cause of PD. LRRK2 is a complex scaffolding protein with known regulatory roles in multiple molecular pathways. Two prominent examples of LRRK2-modulated pathways are Wingless/Int (Wnt) and nuclear factor of activated T-cells (NFAT) signaling. Both are well described key regulators of immune and nervous system development as well as maturation. The aim of this study was to establish the physiological and pathogenic role of LRRK2 in Wnt and NFAT signaling in the brain, as well as the potential contribution of the non-canonical Wnt/Calcium pathway. In vivo cerebral Wnt and NFATc1 signaling activity was quantified in LRRK2 G2019S mutant knock-in (KI) and LRRK2 knockout (KO) male and female mice with repeated measures over 28 weeks, employing lentiviral luciferase biosensors, and analyzed using a mixed-effect model. To establish spatial resolution, we investigated tissues, and primary neuronal cell cultures from different brain regions combining luciferase signaling activity, immunohistochemistry, qPCR and western blot assays. Results were analyzed by unpaired t-test with Welch's correction or 2-way ANOVA with post hoc corrections. In vivo Wnt signaling activity in LRRK2 KO and LRRK2 G2019S KI mice was increased significantly ~ threefold, with a more pronounced effect in males (~ fourfold) than females (~ twofold). NFATc1 signaling was reduced ~ 0.5-fold in LRRK2 G2019S KI mice. Brain tissue analysis showed region-specific expression changes in Wnt and NFAT signaling components. These effects were predominantly observed at the protein level in the striatum and cerebral cortex of LRRK2 KI mice. Primary neuronal cell culture analysis showed significant genotype-dependent alterations in Wnt and NFATc1 signaling under basal and stimulated conditions. Wnt and NFATc1 signaling was primarily dysregulated in cortical and hippocampal neurons respectively. Our study further built on knowledge of LRRK2 as a Wnt and NFAT signaling protein. We identified complex changes in neuronal models of LRRK2 PD, suggesting a role for mutant LRRK2 in the dysregulation of NFAT, and canonical and non-canonical Wnt signaling.


Asunto(s)
Modelos Animales de Enfermedad , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina , Factores de Transcripción NFATC , Enfermedad de Parkinson , Vía de Señalización Wnt , Animales , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/genética , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/metabolismo , Factores de Transcripción NFATC/metabolismo , Factores de Transcripción NFATC/genética , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/patología , Masculino , Ratones , Femenino , Técnicas de Sustitución del Gen , Ratones Noqueados , Neuronas/metabolismo , Encéfalo/metabolismo , Encéfalo/patología , Mutación , Humanos
3.
Hum Mol Genet ; 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38757200

RESUMEN

Gaucher Disease (GD) is an inherited metabolic disorder caused by mutations in the GBA1 gene. It can manifest with severe neurodegeneration and visceral pathology. The most acute neuronopathic form (nGD), for which there are no curative therapeutic options, is characterised by devastating neuropathology and death during infancy. In this study, we investigated the therapeutic benefit of systemically delivered AAV9 vectors expressing the human GBA1 gene at two different doses comparing a neuronal-selective promoter with ubiquitous promoters. Our results highlight the importance of a careful evaluation of the promoter sequence used in gene delivery vectors, suggesting a neuron-targeted therapy leading to high levels of enzymatic activity in the brain but lower GCase expression in the viscera, might be the optimal therapeutic strategy for nGD.

4.
ACS Synth Biol ; 13(2): 466-473, 2024 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-38266181

RESUMEN

We engineered HEK293T cells with a transgene encoding tetracycline-inducible expression of a Staphylococcus aureus nuclease incorporating a translocation signal. We adapted the unmodified and nuclease-engineered cell lines to grow in suspension in serum-free media, generating the HEK293TS and NuPro-2S cell lines, respectively. Transient transfection yielded 1.19 × 106 lentiviral transducing units per milliliter (TU/mL) from NuPro-2S cells and 1.45 × 106 TU/mL from HEK293TS cells. DNA ladder disappearance revealed medium-resident nuclease activity arising from NuPro-2S cells in a tetracycline-inducible manner. DNA impurity levels in lentiviral material arising from NuPro-2S and HEK293TS cells were undetectable by SYBR Safe agarose gel staining. Direct measurement by PicoGreen reagent revealed DNA to be present at 636 ng/mL in lentiviral material from HEK293TS cells, an impurity level reduced by 89% to 70 ng/mL in lentiviral material from NuPro-2S cells. This reduction was comparable to the 23 ng/mL achieved by treating HEK293TS-derived lentiviral material with 50 units/mL Benzonase.


Asunto(s)
Fluoruro de Fosfato Acidulado , Vectores Genéticos , Lentivirus , Animales , Humanos , Lentivirus/genética , Vectores Genéticos/genética , Células HEK293 , Transfección , ADN/genética , Tetraciclina , Mamíferos/genética
5.
J Inherit Metab Dis ; 47(1): 192-210, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37470194

RESUMEN

Fetal gene therapy was first proposed toward the end of the 1990s when the field of gene therapy was, to quote the Gartner hype cycle, at its "peak of inflated expectations." Gene therapy was still an immature field but over the ensuing decade, it matured and is now a clinical and market reality. The trajectory of treatment for several genetic diseases is toward earlier intervention. The ability, capacity, and the will to diagnose genetic disease early-in utero-improves day by day. A confluence of clinical trials now signposts a trajectory toward fetal gene therapy. In this review, we recount the history of fetal gene therapy in the context of the broader field, discuss advances in fetal surgery and diagnosis, and explore the full ambit of preclinical gene therapy for inherited metabolic disease.


Asunto(s)
Terapias Fetales , Terapia Genética , Embarazo , Femenino , Humanos
6.
Handb Exp Pharmacol ; 284: 343-365, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37733107

RESUMEN

In addition to proteins, discussed in the Chapter "Advances in Vaccine Adjuvants: Nanomaterials and Small Molecules", there are a wide range of alternatives to small molecule active ingredients. Cells, extracellular vesicles, and nucleic acids in particular have attracted increasing research attention in recent years. There are now a number of products on the market based on these emerging technologies, the most famous of which are the mRNA-based vaccines against SARS-COV-2. These advanced therapeutic moieties are challenging to formulate however, and there remain significant challenges for their more widespread use. In this chapter, we consider the potential and bottlenecks for developing further medical products based on these systems. Cells, extracellular vesicles, and nucleic acids will be discussed in terms of their mechanism of action, the key requirements for translation, and how advanced formulation approaches can aid their future development. These points will be presented with selected examples from the literature, and with a focus on the formulations which have made the transition to clinical trials and clinical products.


Asunto(s)
Vacunas contra la COVID-19 , Ácidos Nucleicos , Humanos , Sistemas de Liberación de Medicamentos , Ácidos Nucleicos/uso terapéutico
7.
Nanoscale ; 15(12): 5865-5876, 2023 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-36866741

RESUMEN

Adeno-associated viral vectors (AAVs) have proved a mainstay in gene therapy, owing to their remarkable transduction efficiency and safety profile. Their production, however, remains challenging in terms of yield, the cost-effectiveness of manufacturing procedures and large-scale production. In this work, we present nanogels produced by microfluidics as a novel alternative to standard transfection reagents such as polyethylenimine-MAX (PEI-MAX) for the production of AAV vectors with comparable yields. Nanogels were formed at pDNA weight ratios of 1 : 1 : 2 and 1 : 1 : 3, of pAAV cis-plasmid, pDG9 capsid trans-plasmid and pHGTI helper plasmid respectively, where vector yields at a small scale showed no significant difference to those of PEI-MAX. Weight ratios of 1 : 1 : 2 showed overall higher titers than 1 : 1 : 3, where nanogels with nitrogen/phosphate ratios of 5 and 10 produced yields of ≈8.8 × 108 vg mL-1 and ≈8.1 × 108 vg mL-1 respectively compared to ≈1.1 × 109 vg mL-1 for PEI-MAX. In larger scale production, optimised nanogels produced AAV at a titer of ≈7.4 × 1011 vg mL-1, showing no statistical difference from that of PEI-MAX at ≈1.2 × 1012 vg mL-1, indicating that equivalent titers can be achieved with easy-to-implement microfluidic technology at comparably lower costs than traditional reagents.


Asunto(s)
Dependovirus , Vectores Genéticos , Dependovirus/genética , Microfluídica , Nanogeles , Transfección , Polietileneimina
8.
Sci Transl Med ; 13(594)2021 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-34011628

RESUMEN

Most inherited neurodegenerative disorders are incurable, and often only palliative treatment is available. Precision medicine has great potential to address this unmet clinical need. We explored this paradigm in dopamine transporter deficiency syndrome (DTDS), caused by biallelic loss-of-function mutations in SLC6A3, encoding the dopamine transporter (DAT). Patients present with early infantile hyperkinesia, severe progressive childhood parkinsonism, and raised cerebrospinal fluid dopamine metabolites. The absence of effective treatments and relentless disease course frequently leads to death in childhood. Using patient-derived induced pluripotent stem cells (iPSCs), we generated a midbrain dopaminergic (mDA) neuron model of DTDS that exhibited marked impairment of DAT activity, apoptotic neurodegeneration associated with TNFα-mediated inflammation, and dopamine toxicity. Partial restoration of DAT activity by the pharmacochaperone pifithrin-µ was mutation-specific. In contrast, lentiviral gene transfer of wild-type human SLC6A3 complementary DNA restored DAT activity and prevented neurodegeneration in all patient-derived mDA lines. To progress toward clinical translation, we used the knockout mouse model of DTDS that recapitulates human disease, exhibiting parkinsonism features, including tremor, bradykinesia, and premature death. Neonatal intracerebroventricular injection of human SLC6A3 using an adeno-associated virus (AAV) vector provided neuronal expression of human DAT, which ameliorated motor phenotype, life span, and neuronal survival in the substantia nigra and striatum, although off-target neurotoxic effects were seen at higher dosage. These were avoided with stereotactic delivery of AAV2.SLC6A3 gene therapy targeted to the midbrain of adult knockout mice, which rescued both motor phenotype and neurodegeneration, suggesting that targeted AAV gene therapy might be effective for patients with DTDS.


Asunto(s)
Terapia Genética , Células Madre Pluripotentes Inducidas , Trastornos Parkinsonianos , Animales , Modelos Animales de Enfermedad , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/genética , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Ratones , Trastornos Parkinsonianos/genética , Trastornos Parkinsonianos/terapia , Sustancia Negra/metabolismo
9.
Biomolecules ; 11(4)2021 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-33924076

RESUMEN

Rare monogenic disorders such as lysosomal diseases have been at the forefront in the development of novel treatments where therapeutic options are either limited or unavailable. The increasing number of successful pre-clinical and clinical studies in the last decade demonstrates that gene therapy represents a feasible option to address the unmet medical need of these patients. This article provides a comprehensive overview of the current state of the field, reviewing the most used viral gene delivery vectors in the context of lysosomal storage disorders, a selection of relevant pre-clinical studies and ongoing clinical trials within recent years.


Asunto(s)
Terapia Genética/métodos , Enfermedades por Almacenamiento Lisosomal/terapia , Animales , Ensayos Clínicos como Asunto , Edición Génica/métodos , Trasplante de Células Madre Hematopoyéticas/métodos , Humanos , Enfermedades por Almacenamiento Lisosomal/genética
11.
Int J Mol Sci ; 21(14)2020 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-32709131

RESUMEN

Niemann Pick disease type C (NPC) is a neurovisceral disorder due to mutations in NPC1 or NPC2. This review focuses on poorly characterized clinical and molecular features of early infantile form of NPC (EIF) and identified 89 cases caused by NPC1 (NPC1) and 16 by NPC2 (NPC2) mutations. Extra-neuronal features were common; visceromegaly reported in 80/89 NPC1 and in 15/16 NPC2, prolonged jaundice in 30/89 NPC1 and 7/16 NPC2. Early lung involvement was present in 12/16 NPC2 cases. Median age of neurological onset was 12 (0-24) and 7.5 (0-24) months in NPC1 and NPC2 groups, respectively. Developmental delay and hypotonia were the commonest first detected neurological symptoms reported in 39/89 and 18/89 NPC1, and in 8/16 and 10/16 NPC2, respectively. Additional neurological symptoms included vertical supranuclear gaze palsy, dysarthria, cataplexy, dysphagia, seizures, dystonia, and spasticity. The following mutations in homozygous state conferred EIF: deletion of exon 1+promoter, c.3578_3591 + 9del, c.385delT, p.C63fsX75, IVS21-2delATGC, c. 2740T>A (p.C914S), c.3584G>T (p.G1195V), c.3478-6T>A, c.960_961dup (p.A321Gfs*16) in NPC1 and c.434T>A (p.V145E), c.199T>C (p.S67P), c.133C>T (p.Q45X), c.141C>A (p.C47X) in NPC2. This comprehensive analysis of the EIF type of NPC will benefit clinical patient management, genetic counselling, and assist design of novel therapy trials.


Asunto(s)
Péptidos y Proteínas de Señalización Intracelular/genética , Mutación , Enfermedad de Niemann-Pick Tipo C/genética , Proteínas de Transporte Vesicular/genética , Progresión de la Enfermedad , Humanos , Lactante , Proteína Niemann-Pick C1 , Enfermedad de Niemann-Pick Tipo C/patología , Enfermedad de Niemann-Pick Tipo C/fisiopatología
13.
Front Cell Neurosci ; 14: 112, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32435185

RESUMEN

The perinatal period represents a time of great vulnerability for the developing brain. A variety of injuries can result in death or devastating injury causing profound neurocognitive deficits. Hypoxic-ischemic neonatal encephalopathy (HIE) remains the leading cause of brain injury in term infants during the perinatal period with limited options available to aid in recovery. It can result in long-term devastating consequences with neurologic complications varying from mild behavioral deficits to severe seizure, intellectual disability, and/or cerebral palsy in the newborn. Despite medical advances, the only viable option is therapeutic hypothermia which is classified as the gold standard but is not used, or may not be as effective in preterm cases, infection-associated cases or low resource settings. Therefore, alternatives or adjunct therapies are urgently needed. Ongoing research continues to advance our understanding of the mechanisms contributing to perinatal brain injury and identify new targets and treatments. Drugs used for the treatment of patients with type 2 diabetes mellitus (T2DM) have demonstrated neuroprotective properties and therapeutic efficacy from neurological sequelae following HIE insults in preclinical models, both alone, or in combination with induced hypothermia. In this short review, we have focused on recent findings on the use of diabetes drugs that provide a neuroprotective effect using in vitro and in vivo models of HIE that could be considered for clinical translation as a promising treatment.

14.
Cell Death Differ ; 27(8): 2534, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32152554

RESUMEN

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

15.
Biochim Biophys Acta Mol Basis Dis ; 1866(9): 165772, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32220628

RESUMEN

The neuronal ceroid lipofuscinoses (NCLs), also known as Batten disease, are a group of rare monogenic neurodegenerative diseases predominantly affecting children. All NCLs are lethal and incurable and only one has an approved treatment available. To date, 13 NCL subtypes (CLN1-8, CLN10-14) have been identified, based on the particular disease-causing defective gene. The exact functions of NCL proteins and the pathological mechanisms underlying the diseases are still unclear. However, gene therapy has emerged as an attractive therapeutic strategy for this group of conditions. Here we provide a short review discussing updates on the current gene therapy studies for the NCLs.


Asunto(s)
Terapia Genética , Lipofuscinosis Ceroideas Neuronales/terapia , Animales , Humanos , Lipofuscinosis Ceroideas Neuronales/genética
16.
Sci Rep ; 10(1): 2121, 2020 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-32034258

RESUMEN

We have previously designed a library of lentiviral vectors to generate somatic-transgenic rodents to monitor signalling pathways in diseased organs using whole-body bioluminescence imaging, in conscious, freely moving rodents. We have now expanded this technology to adeno-associated viral vectors. We first explored bio-distribution by assessing GFP expression after neonatal intravenous delivery of AAV8. We observed widespread gene expression in, central and peripheral nervous system, liver, kidney and skeletal muscle. Next, we selected a constitutive SFFV promoter and NFκB binding sequence for bioluminescence and biosensor evaluation. An intravenous injection of AAV8 containing firefly luciferase and eGFP under transcriptional control of either element resulted in strong and persistent widespread luciferase expression. A single dose of LPS-induced a 10-fold increase in luciferase expression in AAV8-NFκB mice and immunohistochemistry revealed GFP expression in cells of astrocytic and neuronal morphology. Importantly, whole-body bioluminescence persisted up to 240 days. We have validated a novel biosensor technology in an AAV system by using an NFκB response element and revealed its potential to monitor signalling pathway in a non-invasive manner in a model of LPS-induced inflammation. This technology complements existing germline-transgenic models and may be applicable to other rodent disease models.


Asunto(s)
Dependovirus/genética , Vectores Genéticos/genética , Ratones Transgénicos/genética , Animales , Técnicas Biosensibles/métodos , Expresión Génica/genética , Proteínas Fluorescentes Verdes/genética , Inflamación/genética , Luciferasas de Luciérnaga/genética , Ratones , FN-kappa B/genética , Regiones Promotoras Genéticas/genética , Transducción de Señal/genética , Virus Formadores de Foco en el Bazo/genética , Transcripción Genética/genética
17.
Hum Mol Genet ; 29(12): 1933-1949, 2020 07 29.
Artículo en Inglés | MEDLINE | ID: mdl-31919491

RESUMEN

Gaucher disease is caused by mutations in the GBA gene, which encodes for the lysosomal enzyme ß-glucocerebrosidase (GCase), resulting in the accumulation of storage material in visceral organs and in some cases the brain of affected patients. While there is a commercially available treatment for the systemic manifestations, neuropathology still remains untreatable. We previously demonstrated that gene therapy represents a feasible therapeutic tool for the treatment of the neuronopathic forms of Gaucher disease (nGD). In order to further enhance the therapeutic affects to the central nervous system, we systemically delivered an adeno-associated virus (AAV) serotype 9 carrying the human GBA gene under control of a neuron-specific promoter to an nGD mouse model. Gene therapy increased the life span of treated animals, rescued the lethal neurodegeneration, normalized the locomotor behavioural defects and ameliorated the visceral pathology. Together, these results provided further indication of gene therapy as a possible effective treatment option for the neuropathic forms of Gaucher disease.


Asunto(s)
Enfermedad de Gaucher/terapia , Terapia Genética , Neuronas/metabolismo , Sinapsinas/genética , Animales , Astrocitos/metabolismo , Astrocitos/patología , Dependovirus/genética , Modelos Animales de Enfermedad , Enfermedad de Gaucher/genética , Enfermedad de Gaucher/patología , Humanos , Ratones , Neuronas/patología , Regiones Promotoras Genéticas/genética , Sinapsinas/uso terapéutico
18.
Cell Death Differ ; 27(5): 1588-1603, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31685979

RESUMEN

Heterozygous mutations of the lysosomal enzyme glucocerebrosidase (GBA1) represent the major genetic risk for Parkinson's disease (PD), while homozygous GBA1 mutations cause Gaucher disease, a lysosomal storage disorder, which may involve severe neurodegeneration. We have previously demonstrated impaired autophagy and proteasomal degradation pathways and mitochondrial dysfunction in neurons from GBA1 knockout (gba1-/-) mice. We now show that stimulation with physiological glutamate concentrations causes pathological [Ca2+]c responses and delayed calcium deregulation, collapse of mitochondrial membrane potential and an irreversible fall in the ATP/ADP ratio. Mitochondrial Ca2+ uptake was reduced in gba1-/- cells as was expression of the mitochondrial calcium uniporter. The rate of free radical generation was increased in gba1-/- neurons. Behavior of gba1+/- neurons was similar to gba1-/- in terms of all variables, consistent with a contribution of these mechanisms to the pathogenesis of PD. These data signpost reduced bioenergetic capacity and [Ca2+]c dysregulation as mechanisms driving neurodegeneration.


Asunto(s)
Calcio/metabolismo , Metabolismo Energético , Glucosilceramidasa/deficiencia , Neuronas/patología , Adenosina Difosfato/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Encéfalo/patología , Radicales Libres/metabolismo , Glucosilceramidasa/metabolismo , Ácido Glutámico/toxicidad , Homeostasis/efectos de los fármacos , Metabolismo de los Lípidos/efectos de los fármacos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Ratones Noqueados , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Neuronas/efectos de los fármacos , Receptores de Glutamato/metabolismo
19.
Hum Mol Genet ; 28(23): 3867-3879, 2019 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-31807779

RESUMEN

The neuronal ceroid lipofuscinoses (NCLs), more commonly referred to as Batten disease, are a group of inherited lysosomal storage disorders that present with neurodegeneration, loss of vision and premature death. There are at least 13 genetically distinct forms of NCL. Enzyme replacement therapies and pre-clinical studies on gene supplementation have shown promising results for NCLs caused by lysosomal enzyme deficiencies. The development of gene therapies targeting the brain for NCLs caused by defects in transmembrane proteins has been more challenging and only limited therapeutic effects in animal models have been achieved so far. Here, we describe the development of an adeno-associated virus (AAV)-mediated gene therapy to treat the neurodegeneration in a mouse model of CLN6 disease, a form of NCL with a deficiency in the membrane-bound protein CLN6. We show that neonatal bilateral intracerebroventricular injections with AAV9 carrying CLN6 increase lifespan by more than 90%, maintain motor skills and motor coordination and reduce neuropathological hallmarks of Cln6-deficient mice up to 23 months post vector administration. These data demonstrate that brain-directed gene therapy is a valid strategy to treat the neurodegeneration of CLN6 disease and may be applied to other forms of NCL caused by transmembrane protein deficiencies in the future.


Asunto(s)
Vectores Genéticos/administración & dosificación , Proteínas de la Membrana/genética , Lipofuscinosis Ceroideas Neuronales/terapia , Animales , Animales Recién Nacidos , Encéfalo/crecimiento & desarrollo , Dependovirus/genética , Modelos Animales de Enfermedad , Terapia Genética , Humanos , Inyecciones Intraventriculares , Proteínas de la Membrana/metabolismo , Ratones , Lipofuscinosis Ceroideas Neuronales/genética , Lipofuscinosis Ceroideas Neuronales/metabolismo , Resultado del Tratamiento
20.
Int J Mol Sci ; 20(18)2019 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-31491876

RESUMEN

Fabry disease (FD) is caused by mutations in the GLA gene that encodes lysosomal α-galactosidase-A (α-gal-A). A number of pathogenic mechanisms have been proposed and these include loss of mitochondrial respiratory chain activity. For FD, gene therapy is beginning to be applied as a treatment. In view of the loss of mitochondrial function reported in FD, we have considered here the impact of loss of mitochondrial respiratory chain activity on the ability of a GLA lentiviral vector to increase cellular α-gal-A activity and participate in cross correction. Jurkat cells were used in this study and were exposed to increasing viral copies. Intracellular and extracellular enzyme activities were then determined; this in the presence or absence of the mitochondrial complex I inhibitor, rotenone. The ability of cells to take up released enzyme was also evaluated. Increasing transgene copies was associated with increasing intracellular α-gal-A activity but this was associated with an increase in Km. Release of enzyme and cellular uptake was also demonstrated. However, in the presence of rotenone, enzyme release was inhibited by 37%. Excessive enzyme generation may result in a protein with inferior kinetic properties and a background of compromised mitochondrial function may impair the cross correction process.


Asunto(s)
Complejo I de Transporte de Electrón/genética , Mitocondrias/genética , Mitocondrias/metabolismo , alfa-Galactosidasa/biosíntesis , Línea Celular , Complejo I de Transporte de Electrón/antagonistas & inhibidores , Complejo I de Transporte de Electrón/metabolismo , Enfermedad de Fabry/genética , Enfermedad de Fabry/metabolismo , Dosificación de Gen , Expresión Génica , Humanos , Células Jurkat , Lisosomas/metabolismo , Mitocondrias/efectos de los fármacos , Transducción Genética , Transgenes , alfa-Galactosidasa/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA