Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
J Comput Chem ; 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38970309

RESUMEN

This paper is the first to look at the structural, electronic, mechanical, optical, and thermodynamic properties of the ANiX (ASc, Ti, Y, Zr, Hf; XBi, Sn) half-Heusler (HH) using DFT based first principles method. The lattice parameters that we have calculated are very similar to those obtained in prior investigations with theoretical and experimental data. The positive phonon dispersion curve confirm the dynamical stability of ANiX (ASc, Ti, Y, Zr, Hf; XBi, Sn). The electronic band structure and DOS confirmed that the studied materials ANiX (ASc, Ti, Y, Zr, Hf; XBi, Sn) are direct band gap semiconductors. The investigation also determined significant constants, including dielectric function, absorption, conductivity, reflectivity, refractive index, and loss function. These optical observations unveiled our compounds potential utilization in various electronic and optoelectronic device applications. The elastic constants were used to fulfill the Born criteria, confirming the mechanical stability and ductility of the solids ANiX (ASc, Ti, Y, Zr, Hf; XBi, Sn). The calculated elastic modulus revealed that our studied compounds are elastically anisotropic. Moreover, ANiX (ASc, Ti, Y, Zr, Hf; XBi, Sn) has a very low minimum thermal conductivity (Kmin), and a low Debye temperature (θD), which indicating their appropriateness for utilization in thermal barrier coating (TBC) applications. The Helmholtz free energy (F), internal energy (E), entropy (S), and specific heat capacity (Cv) are determined by calculations derived from the phonon density of states.

2.
Polymers (Basel) ; 16(13)2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-39000682

RESUMEN

Continuous carbon fiber-reinforced (CCFR) thermoset composites have received significant attention due to their excellent mechanical and thermal properties. The implementation of 3D printing introduces cost-effectiveness and design flexibility into their manufacturing processes. The light-assisted 3D printing process shows promise for manufacturing CCFR composites using low-viscosity thermoset resin, which would otherwise be unprintable. Because of the lack of shape-retaining capability, 3D printing of various shapes is challenging with low-viscosity thermoset resin. This study demonstrated an overshoot-associated algorithm for 3D printing various shapes using low-viscosity thermoset resin and continuous carbon fiber. Additionally, 3D-printed unidirectional composites were mechanically characterized. The printed specimen exhibited tensile strength of 390 ± 22 MPa and an interlaminar strength of 38 ± 1.7 MPa, with a fiber volume fraction of 15.7 ± 0.43%. Void analysis revealed that the printed specimen contained 5.5% overall voids. Moreover, the analysis showed the presence of numerous irregular cylindrical-shaped intra-tow voids, which governed the tensile properties. However, the inter-tow voids were small and spherical-shaped, governing the interlaminar shear strength. Therefore, the printed specimens showed exceptional interlaminar shear strength, and the tensile strength had the potential to increase further by improving the impregnation of polymer resin within the fiber.

3.
Animals (Basel) ; 14(11)2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38891692

RESUMEN

The objective of this study was to evaluate the effects of the inclusion of dried Salvia officinalis (SO) shrub leaves on nutrient degradability, ruminal in vitro fermentation, gas production (GP), methane (CH4), and carbon dioxide (CO2) productions. Dried and ground SO shrub leaves were included at 0% (control), 0.5%, 1%, 1.5%, and 2% DM of a diet consisting of (per kg DM) 500 g concentrate feed mixture, 400 g berseem hay, and 100 g rice straw. The diet was incubated for 48 h. The asymptotic GP and the rate of GP changed linearly and quadratically (p < 0.01), with the highest GP observed at 1% inclusion of SO and then decreasing thereafter with greater inclusion (i.e., 1.5% and 2%), while CH4 production and its rate decreased linearly (p < 0.01) with all levels of SO inclusion. A linear increase in CO2 production and its rate was also found with an increasing level of SO inclusion in the diet (p < 0.05). Furthermore, the degradability of DM, NDF, and the concentration of total short-chain fatty acids and acetate changed linearly and quadratically, with the greatest being found at 1% SO inclusion and then steadily declining after (p < 0.01) with the 1.5% and 2% inclusion levels. Meanwhile, the propionate, NH3-N, and microbial crude protein levels showed similar trends, with the plateau found at 1% inclusion of SO, where there was no change in butyrate concentration. Moreover, the pH, metabolizable energy, and partitioning factor (PF24) also changed linearly and quadratically (p < 0.05), where the pH and PF24 were considerably reduced and ME increased with a 1% inclusion of SO (p < 0.05). In summary, SO at 1% inclusion in the diet showed the potential to improve gas production kinetics, nutrient degradability, and the ruminal fermentation profile, with a more significant reduction in ruminal CH4 production suggesting that SO at 1% could be included in the ruminant diet to reduce their carbon footprint and increase the production performance.

5.
Trends Plant Sci ; 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38782619

RESUMEN

Iron (Fe) biofortification of edible organs without influencing crop yield is challenging, and potential solutions are largely unknown. Recently, Yan et al. identified a key regulator NAC78 (NAM/ATAF/CUC DOMAIN TRANSCRIPTION FACTOR 78) that enriches Fe in maize kernels without compromising crop yield. This may provide new crop yield management strategies for Fe acquisition and nutritional security.

6.
Int J Microbiol ; 2024: 9978033, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38716460

RESUMEN

Bioactive peptides (BAPs) obtained from plants and microbes have been thoroughly explored and studied due to their prophylactic properties. The use of BAPs seems to be a promising substitute for several currently available antibiotics because of their antimicrobial properties against foodborne pathogens. BAPs have several other useful properties including antitumor, antihypertensive, antioxidant, antiobesity, and antidiabetic activities. Nowadays, scientists have attempted to recombinantly synthesize bioactive peptides to study their characteristics and potential uses, since BAPs are not found in large quantities in nature. Many pathogenic microorganisms including foodborne pathogens are becoming resistant to various antibiotics. To combat these pathogens, scientists are working to find novel, innovative, and safe antimicrobial agents. Plant- and microbe-based BAPs have demonstrated noteworthy antimicrobial activity against a wide range of pathogenic microorganisms, including foodborne pathogens. BAPs can kill pathogenic microorganisms by disrupting membrane integrity, inhibiting DNA and RNA synthesis, preventing protein synthesis, blocking protein activity, or interacting with certain intracellular targets. In addition, the positive effect of BAP consumption extends to gut microbiota modulation and affects the equilibrium of reactive oxygen species in the gut. This article discusses recombinant BAPs, BAPs generated from plants and microbes, and their antimicrobial applications and modes of action for controlling foodborne pathogens.

7.
J Hazard Mater ; 471: 134262, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38640678

RESUMEN

Cadmium (Cd) hazard is a serious limitation to plants, soils and environments. Cd-toxicity causes stunted growth, chlorosis, necrosis, and plant yield loss. Thus, ecofriendly strategies with understanding of molecular mechanisms of Cd-tolerance in plants is highly demandable. The Cd-toxicity caused plant growth retardation, leaf chlorosis and cellular damages, where the glutathione (GSH) enhanced plant fitness and Cd-toxicity in Brassica through Cd accumulation and antioxidant defense. A high-throughput proteome approach screened 4947 proteins, wherein 370 were differently abundant, 164 were upregulated and 206 were downregulated. These proteins involved in energy and carbohydrate metabolism, CO2 assimilation and photosynthesis, signal transduction and protein metabolism, antioxidant defense response, heavy metal detoxification, cytoskeleton and cell wall structure, and plant development in Brassica. Interestingly, several key proteins including glutathione S-transferase F9 (A0A078GBY1), ATP sulfurylase 2 (A0A078GW82), cystine lyase CORI3 (A0A078FC13), ferredoxin-dependent glutamate synthase 1 (A0A078HXC0), glutaredoxin-C5 (A0A078ILU9), glutaredoxin-C2 (A0A078HHH4) actively involved in antioxidant defense and sulfur assimilation-mediated Cd detoxification process confirmed by their interactome analyses. These candidate proteins shared common gene networks associated with plant fitness, Cd-detoxification and tolerance in Brassica. The proteome insights may encourage breeders for enhancing multi-omics assisted Cd-tolerance in Brassica, and GSH-mediated hazard free oil seed crop production for global food security.


Asunto(s)
Brassica napus , Cadmio , Glutatión , Proteínas de Plantas , Proteómica , Cadmio/toxicidad , Brassica napus/efectos de los fármacos , Brassica napus/genética , Brassica napus/metabolismo , Glutatión/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Contaminantes del Suelo/toxicidad , Proteoma/efectos de los fármacos , Proteoma/metabolismo , Antioxidantes/metabolismo
8.
PLoS One ; 19(1): e0297202, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38241307

RESUMEN

Turmeric, a globally cultivated spice, holds significance in medicine, and cosmetics, and is also a very popular ingredient in South Asian cuisine. A study involving 53 turmeric genotypes evaluated for rhizome yield and related traits at Spices Research Center, Bogura, Bangladesh over three years (2019-22). A randomized complete block design was followed with two replications. ANOVA revealed significant trait variations among genotypes. Genotype T0015 emerged as the highest yielder at 28.04 t/ha. High heritability (0.58-0.99) and genetic advance characterized plant height (PH), mother rhizome weight (WMR), primary and secondary finger weights (WPF and WSF), and yield per plant (YPP) across seasons. Genetic gain (GG) was prominent in these traits. Genotypic and phenotypic coefficient variations (GCV and PCV) (6.24-89.46 and 8.18-90.88, respectively) across three years highlighted mother rhizome weight's importance followed by numbers of primary finger (NPF), and WPF. Positive and significant correlations, especially with PH, WMR, WPF, and YPP, emphasized their relevance to fresh yield (FY). Multiple linear regression identified PH, number of mother rhizome (NMR) and WMR as key contributors, explaining 37-79% of FY variability. Cluster analysis grouped genotypes into five clusters with maximum distance observed between clusters II and III. The geometric adaptability index (GAI) assessed adaptability and superiority, revealing nine genotypes outperforming the best existing cultivar. Genotype T0117 as the top performer based on GAI, followed by T0103 and T0094. Mean rank analysis favoured T0121 as the best performer, succeeded by T0117, T0082 and T0106. The top ten genotypes (T0015, T0061, T0082, T0085, T0094, T0103, T0106, T0117, T0121 and T0129) were identified as superior based on yield and overall ranking, warranting further evaluation. These findings may induce a window for improving turmeric research and ultimately play a role in enhancing its cultivation and productivity.


Asunto(s)
Curcuma , Bangladesh , Curcuma/genética , Curcuma/química , Genotipo , Fenotipo
9.
J Korean Neurosurg Soc ; 67(1): 122-129, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37643721

RESUMEN

Paragangliomas are rare neuroendocrine tumors that are usually benign in nature. They may be either familial or sporadic in their occurrence. Numerous neuroendocrine tumors are collectively included under the umbrella of paragangliomas. Among them, carotid body tumors and glomus jugulare tumors are extremely rare. Thus, we present a rare case of 29-year-old male who was admitted with hearing difficulties and tinnitus in the left ear, with swelling on the left side of the neck. Based on clinical and radiological findings, a diagnosis of left-sided glomus jugulare with carotid body tumor was made. The patient underwent a twostage surgery with an interval of approximately 2 months. Histopathology revealed a paraganglioma. Herein, we present the clinical features, imaging findings, management, and a brief review of literature on the classification, evaluation, and management of carotid body and glomus jugulare tumors. Paraganglioma is a slow-growing tumor. The synchronous occurrence of carotid body and glomus jugulare tumors is infrequent. Microsurgical resection remains the primary treatment modality. Therefore, our patient underwent two-stage surgery. The rarity of occurrence and the proximity and adherence to vital neurovascular structures have resulted in the treatment of paragangliomas remaining a challenge.

10.
Heliyon ; 9(12): e22866, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38125486

RESUMEN

Conventional Copper Indium Gallium Di Selenide (CIGS)-based solar cells are more efficient than second-generation technology based on hydrogenated amorphous silicon (a-Si: H) or cadmium telluride (CdTe). So, herein the photovoltaic (PV) performance of CIGS-based solar cells has been investigated numerically using SCAPS-1D solar simulator with different buffer layer and less expensive tin sulfide (Sn2S3) back-surface field (BSF). At first, three buffer layer such as cadmium sulfide (CdS), zinc selenide (ZnSe) and indium-doped zinc sulfide ZnS:In have been simulated with CIGS absorber without BSF due to optimized and non-toxic buffer. Then the optimized structure of Al/FTO/ZnS:In/CIGS/Ni is modified to become Al/FTO/ZnS:In/CIGS/Sn2S3/Ni by adding a Sn2S3 BSF to enhanced efficiency. The detailed analysis have been investigated is the influence of physical properties of each absorber and buffer on photovoltaic parameters including layer thickness, carrier doping concentration, bulk defect density, interface defect density. This study emphasizes investigating the reasons for the actual devices' poor performance and illustrates how each device's might vary open-circuit voltage (VOC), short-circuit current density (JSC), fill factor (FF), power conversion efficiency (PCE), and quantum efficiency (QE). The optimized structure offers outstanding power conversion efficiency (PCE) of 21.83 % with only 0.80 µm thick CIGS absorber. The proposed CIGS-based solar cell performs better than the previously reported conventional designs while also reducing CIGS thickness and cost.

11.
Artículo en Inglés | MEDLINE | ID: mdl-37871596

RESUMEN

In this work, we have conducted an ab initio computational research of the pressure impact on the structural, elastic, thermodynamic, electronic, and optical properties of Be-based fluoroperovskite XBeF3 (X= K, Rb) compounds by using GGA+ PBEsol functional based on DFT in the CASTEP Package. These compounds' ground state characteristics were examined, including the lattice parameters, coefficient compressibility (B), and its pressure derivative(B'). Structural characterization shows that these compounds keep a cubic crystal structure with the impact of stress till 18 GPa. In addition, we computed elastic constants, Young's modulus (E), shear modulus (G), Poisson's ratio (σ), and the anisotropy factor (A). As the elastic stiffness parameters comply with the Born stability criterion, the examined phases are mechanically stable. The ductility of phases XBeF3 (X= K, Rb) has been assured from the high coefficient compressibility (B) and Pugh's ratio values. Furthermore, we determined the thermodynamic behavior of XBeF3 (X= K, Rb) through the quasi-harmonic Debye model. The electronic band structure and DOS (Density of States) were studied, which provide information on the insulator properties of the two compounds. Also, we studied various optical properties of the materials including: refractive index, optical reflectivity, coefficient of absorption, both real and imaginary parts of dielectric function and lastly the energy loss function. On the basis of these reported studies of these materials, their applications in many modern electronic devices can be predicted.

12.
Environ Sci Pollut Res Int ; 30(54): 115461-115479, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37882925

RESUMEN

Cadmium (Cd) is a toxic substance that is uptake by plants from soils, Cd easily transfers into the food chain. Considering global food security, eco-friendly, cost-effective, and metal detoxification strategies are highly demandable for sustainable food crop production. The purpose of this study was to investigate how citric acid (CA) alleviates or tolerates Cd toxicity in Brassica using a proteome approach. In this study, the global proteome level was significantly altered under Cd toxicity with or without CA supplementation in Brassica. A total of 4947 proteins were identified using the gel-free proteome approach. Out of these, 476 proteins showed differential abundance between the treatment groups, wherein 316 were upregulated and 160 were downregulated. The gene ontology analysis reveals that differentially abundant proteins were involved in different biological processes including energy and carbohydrate metabolism, CO2 assimilation and photosynthesis, signal transduction and protein metabolism, antioxidant defense, heavy metal detoxification, plant development, and cytoskeleton and cell wall structure in Brassica leaves. Interestingly, several candidate proteins such as superoxide dismutase (A0A078GZ68) L-ascorbate peroxidase 3 (A0A078HSG4), glutamine synthetase (A0A078HLB2), glutathione S-transferase DHAR1 (A0A078HPN8), glutamine synthetase (A0A078HLB2), cysteine synthase (A0A078GAD3), S-adenosylmethionine synthase 2 (A0A078JDL6), and thiosulfate/3-mercaptopyruvate sulfur transferase 2 (A0A078H905) were involved in antioxidant defense system and sulfur assimilation-involving Cd-detoxification process in Brassica. These findings provide new proteome insights into CA-mediated Cd-toxicity alleviation in Brassica, which might be useful to oilseed crop breeders for enhancing heavy metal tolerance in Brassica using the breeding program, with sustainable and smart Brassica production in a metal-toxic environment.


Asunto(s)
Brassica napus , Brassica , Metales Pesados , Cadmio/análisis , Antioxidantes/metabolismo , Brassica napus/metabolismo , Proteoma/metabolismo , Ácido Cítrico/metabolismo , Glutamato-Amoníaco Ligasa/metabolismo , Fitomejoramiento , Metales Pesados/metabolismo , Brassica/metabolismo , Azufre/metabolismo
13.
PeerJ ; 11: e15743, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37601248

RESUMEN

Background: The green approaches for the synthesis of nanoparticles are gaining significant importance because of their high productivity, purity, low cost, biocompatibility, and environmental friendliness. Methods: The aim of the current study is the green synthesis of zinc oxide nanoparticles (ZnO-NPs) using seed extracts of Silybum marianum, which acts as a reducing and stabilizing agent. central composite design (CCD) of response surface methodology (RSM) optimized synthesis parameters (temperature, pH, reaction time, plant extract, and salt concentration) for controlled size, stability, and maximum yields of ZnO-NPs. Green synthesized ZnO-NPs was characterized using UV-visible spectroscopy and Zetasizer analyses. Results: The Zetasizer confirmed that green synthesized ZnO-NPs were 51.80 nm in size and monodispersed in nature. The UV-visible results revealed a large band gap energy in the visible region at 360.5 nm wavelength. The bioactivities of green synthesized ZnO-NPs, including antifungal, antibacterial, and pesticidal, were also evaluated. Data analysis confirmed that these activities were concentration dependent. Bio-synthesized ZnO-NPs showed higher mortality towards Tribolium castaneum of about 78 ± 0.57% after 72 h observation as compared to Sitophilus oryzae, which only displayed 74 ± 0.57% at the same concentration and time intervals. Plant-mediated ZnO-NPs also showed high potential against pathogenic gram-positive bacteria (Clavibacter michiganensis), gram-negative bacteria (Pseudomonas syringae), and two fungal strains such as Fusarium oxysporum, and Aspergillums niger with inhibition zones of 18 ± 0.4, 25 ± 0.4, 21 ± 0.57, and 19 ± 0.4 mm, respectively. Conclusion: The results of this study showed that Silybum marianum-based ZnO-NPs are cost-effective and efficient against crop pests.


Asunto(s)
Asteraceae , Nanopartículas , Óxido de Zinc , Silybum marianum , Óxido de Zinc/farmacología , Antibacterianos
15.
Plants (Basel) ; 12(11)2023 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-37299147

RESUMEN

Growth habits are among the essential adaptive traits acted upon by evolution during plant speciation. They have brought remarkable changes in the morphology and physiology of plants. Inflorescence architecture varies greatly between wild relatives and cultivars of pigeon pea. The present study isolated the CcTFL1 (Terminal Flowering Locus 1) locus using six varieties showing determinate (DT) and indeterminate (IDT) growth habits. Multiple alignments of CcTFL1 sequences revealed the presence of InDel, which describes a 10 bp deletion in DT varieties. At the same time, IDT varieties showed no deletion. InDel altered the translation start point in DT varieties, resulting in the shortening of exon 1. This InDel was validated in ten varieties of cultivated species and three wild relatives differing in growth habits. The predicted protein structure showed the absence of 27 amino acids in DT varieties, which was reflected in mutant CcTFL1 by the absence of two α-helices, a connecting loop, and shortened ß-sheet. By subsequent motif analysis, it was found that the wild-type protein had a phosphorylation site for protein kinase C, but the mutant protein did not. In silico analysis revealed that the InDel-driven deletion of amino acids spans, containing a phosphorylation site for kinase protein, may have resulted in the non-functionality of the CcTFL1 protein, rendering the determinate growth habit. This characterization of the CcTFL1 locus could be used to modulate growth habits through genome editing.

16.
Plant Physiol Biochem ; 200: 107767, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37220675

RESUMEN

Chromium (Cr), a highly toxic redox-active metal cation in soil, seriously threatens global agriculture by affecting nutrient uptake and disturbing various physio-biochemical processes in plants, thereby reducing yields. Here, we examined the effects of different concentrations of Cr alone and in combination with hydrogen sulfide (H2S) application on the growth and physio-biochemical performance of two mungbeans (Vigna radiata L.) varieties, viz. Pusa Vishal (PV; Cr tolerant) and Pusa Ratna (PR; Cr sensitive), growing in a pot in hydroponics. Plants were grown in the pot experiment to examine their growth, enzymatic and non-enzymatic antioxidant levels, electrolyte balance, and plasma membrane (PM) H+-ATPase activity. Furthermore, root anatomy and cell death were analysed 15 days after sowing both varieties in hydroponic systems. The Cr-induced accumulation of reactive oxygen species caused cell death and affected the root anatomy and growth of both varieties. However, the extent of alteration in anatomical features was less in PV than in PR. Exogenous application of H2S promoted plant growth, thereby improving plant antioxidant activities and reducing cell death by suppressing Cr accumulation and translocation. Seedlings of both cultivars treated with H2S exhibited enhanced photosynthesis, ion uptake, glutathione, and proline levels and reduced oxidative stress. Interestingly, H2S restricted the translocation of Cr to aerial parts of plants by improving the nutrient profile and viability of root cells, thereby relieving plants from oxidative bursts by activating the antioxidant machinery through triggering the ascorbate-glutathione cycle. Overall, H2S application improved the nutrient profile and ionic homeostasis of Cr-stressed mungbean plants. These results highlight the importance of H2S application in protecting crops against Cr toxicity. Our findings can be utilised to develop management strategies to improve heavy metal tolerance among crops.


Asunto(s)
Sulfuro de Hidrógeno , Vigna , Antioxidantes/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Plantones/metabolismo , Vigna/metabolismo , Sulfuro de Hidrógeno/farmacología , Sulfuro de Hidrógeno/metabolismo , Cromo/toxicidad , Estrés Oxidativo , Glutatión/metabolismo , Productos Agrícolas/metabolismo
17.
Front Plant Sci ; 14: 1154051, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37063224

RESUMEN

Abiotic stress, especially salt stress, is one of the major barriers to crop production worldwide. Crops like onion that belong to the glycophytic group are more sensitive to salinity stress. A huge study regarding the influence of salinity stress on the growth and development of crops has already been done and is still ongoing. One of the major targets of the research is to develop genotypes that have enhanced performance under stress environments. The world needs more of these types of genotypes to combat the ever-growing salt-stressed soils. Therefore, a number of germplasm were studied during the 2019-2020 and 2020-2021 seasons under different salt concentrations to identify tolerant genotypes as well as to study the plants' responses at different growth stages against elevated salinity levels. A 2-year study was conducted where germination potential was evaluated in the first year and carried out in petri dish culture of seeds, followed by plastic pot culture for plant establishment and bulb development evaluation during the second year. Four different saline water solutions having different salt concentrations (0, 8, 10, and 12 dS m-1) were applied to the petri dishes and pots as the source of water for plants in both seasons. Results indicated that a significant reduction in plants' performance occurs under higher salinity levels. Salt concentration had an adverse impact on germination, leaf development and growth, the height of plants, bulb size and shape, and the bulb weight of onion. All the growth phases of onion are sensitive to elevated concentrations. Variable performances were observed in the genotypes under stress conditions, and a few genotypes (Ac Bog 409, Ac Bog 414, Ac Bog 424, Ac Bog 430, Ac Bog 417, Ac Bog 419, Ac Bog 420, Ac Bog 422, and Ac Bog 425) having some sort of tolerance to salt stress were identified, which might be recommended for mass production. Tolerance indices could successfully be applied in selecting the salt-tolerant genotypes. Thus, the present findings and the identified genotypes could be further utilized in salt stress improvement research on onion.

18.
Polymers (Basel) ; 15(6)2023 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-36987165

RESUMEN

Additive manufacturing (AM) is one of the fastest-growing manufacturing technologies in modern times. One of the major challenges in the application of 3D-printed polymeric objects is expanding the applications to structural components, as they are often limited by their mechanical and thermal properties. To enhance the mechanical properties of 3D-printed thermoset polymer objects, reinforcing the polymer with continuous carbon fiber (CF) tow is an expanding direction of research and development. A 3D printer was constructed capable of printing with a continuous CF-reinforced dual curable thermoset resin system. Mechanical performance of the 3D-printed composites varied with the utilization of different resin chemistries. Three different commercially available violet light curable resins were mixed with a thermal initiator to improve curing by overcoming the shadowing effect of violet light by the CF. The resulting specimens' compositions were analyzed, and then the specimens were mechanically characterized for comparison in tensile and flexural performance. The 3D-printed composites' compositions were correlated to the printing parameters and resin characteristics. Slight enhancements in tensile and flexural properties from some commercially available resins over others appeared to be the result of better wet-out and adhesion.

19.
PeerJ ; 11: e14833, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36815980

RESUMEN

Plant hybridization is an important breeding technique essential for producing a genotype (hybrid) with favorable traits (e.g., stress tolerance, pest resistance, high yield potential etc.) to increase agronomic, economic and commercial values. Studying of genetic dominance among the population helps to determine gene action, heritability and candidate gene selection for plant breeding program. Therefore, this investigation was aimed to evaluate gene action, heritability, genetic advance and heterosis of rice root, agronomic, and yield component traits under water deficit conditions. In this study, crossing was performed among the four different water-deficit tolerant rice genotypes to produce better hybrid (F1), segregating (F2) and back-cross (BC1 and BC2) populations. The Giza 178, WAB56-204, and Sakha104 × WAB56-104 populations showed the better physiological and agronomical performances, which provided better adaptability of the populations to water deficit condition. Additionally, the estimation of heterosis and heterobeltiosis of some quantitative traits in rice populations were also studied. The inheritance of all studied traits was influenced by additive gene actions. Dominance gene actions played a major role in controlling the genetic variance among studied traits in both crossed populations under well-watered and drought conditions. The additive × additive type of gene interactions was essential for the inheritance of root length, root/shoot ratio, 1,000-grain weight, and sterility % of two crossed populations under both conditions. On the contrary, the additive × dominance type of gene interactions was effective in the inheritance of all studied traits, except duration in Giza178 × Sakha106, and plant height in Sakha104 × WAB56-104 under water deficit condition. In both crosses, the dominance × dominance type of gene interactions was effective in the inheritance of root volume, root/shoot ratio, number of panicles/plant and 1,000-grain weight under both conditions. Moreover, dominance × dominance type of gene interaction played a major role in the inheritance of root length, number of roots/plant, plant height, panicle length, number of filled grain/panicle and grain yield/plant in Giza178 × Sakha106 under both conditions. The studied traits in both crossed populations indicated better genetic advance as they showed advanced qualitative and quantitative characters in rice populations under water deficit condition. Overall, our findings open a new avenue of future phenotypic and genotypic association studies in rice. These insights might be useful to the plant breeders and farmers for developing water deficit tolerant rice cultivars.


Asunto(s)
Oryza , Oryza/genética , Fitomejoramiento , Fenotipo , Genotipo , Agua
20.
Data Brief ; 46: 108853, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36624760

RESUMEN

This article reports the Chromobacterium amazonense BASUSDA_45 strain's draft genomic sequence. The bacterium was isolated from cypermethrin pesticide contaminated soil and then the sequencing was carried out. Initially de novo assembly of the raw sequences, trimming and quality check generates 125 contigs having N50 of 78,923. Further mapping of the contigs generated scaffolds. The genome contains 53 scaffolds with a total length of 4,295,151 bp having 62.30% GC content and N50 of 3,726,017. Annotation using Prokaryotic Genome Annotation Pipeline (PGAP) reveals 4181 genes among which 4096 were coding sequences, 76 tRNAs, 3 rRNAs, 4 noncoding RNAs. The raw sequence reads and annotated genome were uploaded to NCBI's Bioproject repository with the accession number PRJNA686506.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA