Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
1.
Geroscience ; 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39060678

RESUMEN

Biological age (BA) captures detrimental age-related changes. The best-known and most-used BA indicators include DNA methylation-based epigenetic clocks and telomere length (TL). The most common biological sample material for epidemiological aging studies, whole blood, is composed of different cell types. We aimed to compare differences in BAs between blood cell types and assessed the BA indicators' cell type-specific associations with chronological age (CA). An analysis of DNA methylation-based BA indicators, including TL, methylation level at cg16867657 in ELOVL2, as well as the Hannum, Horvath, DNAmPhenoAge, and DunedinPACE epigenetic clocks, was performed on 428 biological samples of 12 blood cell types. BA values were different in the majority of the pairwise comparisons between cell types, as well as in comparison to whole blood (p < 0.05). DNAmPhenoAge showed the largest cell type differences, up to 44.5 years and DNA methylation-based TL showed the lowest differences. T cells generally had the "youngest" BA values, with differences across subsets, whereas monocytes had the "oldest" values. All BA indicators, except DunedinPACE, strongly correlated with CA within a cell type. Some differences such as DNAmPhenoAge-difference between naïve CD4 + T cells and monocytes were constant regardless of the blood donor's CA (range 20-80 years), while for DunedinPACE they were not. In conclusion, DNA methylation-based indicators of BA exhibit cell type-specific characteristics. Our results have implications for understanding the molecular mechanisms underlying epigenetic clocks and underscore the importance of considering cell composition when utilizing them as indicators for the success of aging interventions.

2.
Front Psychiatry ; 15: 1345159, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38726387

RESUMEN

Background: Studies have shown that cardiovascular health (CVH) is related to depression. We aimed to identify gene networks jointly associated with depressive symptoms and cardiovascular health metrics using the whole blood transcriptome. Materials and methods: We analyzed human blood transcriptomic data to identify gene co-expression networks, termed gene modules, shared by Beck's depression inventory (BDI-II) scores and cardiovascular health (CVH) metrics as markers of depression and cardiovascular health, respectively. The BDI-II scores were derived from Beck's Depression Inventory, a 21-item self-report inventory that measures the characteristics and symptoms of depression. CVH metrics were defined according to the American Heart Association criteria using seven indices: smoking, diet, physical activity, body mass index (BMI), blood pressure, total cholesterol, and fasting glucose. Joint association of the modules, identified with weighted co-expression analysis, as well as the member genes of the modules with the markers of depression and CVH were tested with multivariate analysis of variance (MANOVA). Results: We identified a gene module with 256 genes that were significantly correlated with both the BDI-II score and CVH metrics. Based on the MANOVA test results adjusted for age and sex, the module was associated with both depression and CVH markers. The three most significant member genes in the module were YOD1, RBX1, and LEPR. Genes in the module were enriched with biological pathways involved in brain diseases such as Alzheimer's, Parkinson's, and Huntington's. Conclusions: The identified gene module and its members can provide new joint biomarkers for depression and CVH.

3.
Mol Psychiatry ; 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38433276

RESUMEN

Genome-wide association studies of human personality have been carried out, but transcription of the whole genome has not been studied in relation to personality in humans. We collected genome-wide expression profiles of adults to characterize the regulation of expression and function in genes related to human personality. We devised an innovative multi-omic approach to network analysis to identify the key control elements and interactions in multi-modular networks. We identified sets of transcribed genes that were co-expressed in specific brain regions with genes known to be associated with personality. Then we identified the minimum networks for the co-localized genes using bioinformatic resources. Subjects were 459 adults from the Young Finns Study who completed the Temperament and Character Inventory and provided peripheral blood for genomic and transcriptomic analysis. We identified an extrinsic network of 45 regulatory genes from seed genes in brain regions involved in self-regulation of emotional reactivity to extracellular stimuli (e.g., self-regulation of anxiety) and an intrinsic network of 43 regulatory genes from seed genes in brain regions involved in self-regulation of interpretations of meaning (e.g., production of concepts and language). We discovered that interactions between the two networks were coordinated by a control hub of 3 miRNAs and 3 protein-coding genes shared by both. Interactions of the control hub with proteins and ncRNAs identified more than 100 genes that overlap directly with known personality-related genes and more than another 4000 genes that interact indirectly. We conclude that the six-gene hub is the crux of an integrative network that orchestrates information-transfer throughout a multi-modular system of over 4000 genes enriched in liquid-liquid-phase-separation (LLPS)-related RNAs, diverse transcription factors, and hominid-specific miRNAs and lncRNAs. Gene expression networks associated with human personality regulate neuronal plasticity, epigenesis, and adaptive functioning by the interactions of salience and meaning in self-awareness.

4.
Epigenetics ; 19(1): 2332819, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38525792

RESUMEN

Non-coding 886 (nc886, vtRNA2-1) is the only human polymorphically imprinted gene, in which the methylation status is not determined by genetics. Existing literature regarding the establishment, stability and consequences of the methylation pattern, as well as the nature and function of the nc886 RNAs transcribed from the locus, are contradictory. For example, the methylation status of the locus has been reported to be stable through life and across somatic tissues, but also susceptible to environmental effects. The nature of the produced nc886 RNA(s) has been redefined multiple times, and in carcinogenesis, these RNAs have been reported to have conflicting roles. In addition, due to the bimodal methylation pattern of the nc886 locus, traditional genome-wide methylation analyses can lead to false-positive results, especially in smaller datasets. Herein, we aim to summarize the existing literature regarding nc886, discuss how the characteristics of nc886 give rise to contradictory results, as well as to reinterpret, reanalyse and, where possible, replicate the results presented in the current literature. We also introduce novel findings on how the distribution of the nc886 methylation pattern is associated with the geographical origins of the population and describe the methylation changes in a large variety of human tumours. Through the example of this one peculiar genetic locus and RNA, we aim to highlight issues in the analysis of DNA methylation and non-coding RNAs in general and offer our suggestions for what should be taken into consideration in future analyses.


Asunto(s)
Metilación de ADN , Neoplasias , Humanos , Epigénesis Genética , ARN
5.
Aging Cell ; 23(3): e14052, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38031635

RESUMEN

Schizophrenia is often regarded as a disorder of premature aging. We investigated (a) whether polygenic risk for schizophrenia (PRSsch ) relates to pace of epigenetic aging and (b) whether personal dispositions toward active and emotionally close relationships protect against accelerated epigenetic aging in individuals with high PRSsch . The sample came from the population-based Young Finns Study (n = 1348). Epigenetic aging was measured with DNA methylation aging algorithms such as AgeAccelHannum , EEAAHannum , IEAAHannum , IEAAHorvath , AgeAccelHorvath , AgeAccelPheno , AgeAccelGrim , and DunedinPACE. A PRSsch was calculated using summary statistics from the most comprehensive genome-wide association study of schizophrenia to date. Social dispositions were assessed in terms of extraversion, sociability, reward dependence, cooperativeness, and attachment security. We found that PRSsch did not have a statistically significant effect on any studied indicator of epigenetic aging. Instead, PRSsch had a significant interaction with reward dependence (p = 0.001-0.004), cooperation (p = 0.009-0.020), extraversion (p = 0.019-0.041), sociability (p = 0.003-0.016), and attachment security (p = 0.007-0.014) in predicting AgeAccelHannum , EEAAHannum , or IEAAHannum . Specifically, participants with high PRSsch appeared to display accelerated epigenetic aging at higher (vs. lower) levels of extraversion, sociability, attachment security, reward dependence, and cooperativeness. A rather opposite pattern was evident for those with low PRSsch . No such interactions were evident when predicting the other indicators of epigenetic aging. In conclusion, against our hypothesis, frequent social interactions may relate to accelerated epigenetic aging in individuals at risk for psychosis. We speculate that this may be explained by social-cognitive impairments (perceiving social situations as overwhelming or excessively arousing) or ending up in less supportive or deviant social groups.


Asunto(s)
Esquizofrenia , Humanos , Esquizofrenia/genética , Estudio de Asociación del Genoma Completo , Finlandia , Epigénesis Genética/genética , Envejecimiento/genética , Metilación de ADN/genética
6.
OMICS ; 27(5): 193-204, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37145884

RESUMEN

Advanced integrative analysis of DNA methylation and transcriptomics data may provide deeper insights into smoke-induced epigenetic alterations, their effects on gene expression and related biological processes, linking cigarette smoking and related diseases. We hypothesize that accumulation of DNA methylation changes in CpG sites across genomic locations of different genes might have biological significance. We tested the hypothesis by performing gene set based integrative analysis of blood DNA methylation and transcriptomics data to identify potential transcriptomic consequences of smoking via changes in DNA methylation in the Young Finns Study (YFS) participants (n = 1114, aged 34-49 years, women: 54%, men: 46%). First, we performed epigenome-wide association study (EWAS) of smoking. We then defined sets of genes based on DNA methylation status within their genomic regions, for example, sets of genes containing hyper- or hypomethylated CpG sites in their body or promoter regions. Gene set analysis was performed using transcriptomics data from the same participants. Two sets of genes, one containing 49 genes with hypomethylated CpG sites in their body region and the other containing 33 genes with hypomethylated CpG sites in their promoter region, were differentially expressed among the smokers. Genes in the two gene sets are involved in bone formation, metal ion transport, cell death, peptidyl-serine phosphorylation, and cerebral cortex development process, revealing epigenetic-transcriptomic pathways to smoking-related diseases such as osteoporosis, atherosclerosis, and cognitive impairment. These findings contribute to a deeper understanding of the pathophysiology of smoking-related diseases and may provide potential therapeutic targets.


Asunto(s)
Fumar Cigarrillos , Masculino , Humanos , Femenino , Epigenoma , Estudio de Asociación del Genoma Completo , Metilación de ADN/genética , Perfilación de la Expresión Génica , Islas de CpG/genética , Epigénesis Genética
7.
Sci Rep ; 13(1): 1706, 2023 01 30.
Artículo en Inglés | MEDLINE | ID: mdl-36717592

RESUMEN

Metabolic dysfunction, partly driven by altered liver function, predisposes to coronary artery disease (CAD), but the role of liver in vulnerable atherosclerotic plaque development remains unclear. Here we produced hepatocyte-like cells (HLCs) from 27 induced pluripotent stem cell (iPSC) lines derived from 15 study subjects with stable CAD (n = 5), acute CAD (n = 5) or healthy controls (n = 5). We performed a miRNA microarray screening throughout the differentiation, as well as compared iPSC-HLCs miRNA profiles of the patient groups to identify miRNAs involved in the development of CAD. MicroRNA profile changed during differentiation and started to resemble that of the primary human hepatocytes. In the microarray, 35 and 87 miRNAs were statistically significantly deregulated in the acute and stable CAD patients, respectively, compared to controls. Down-regulation of miR-149-5p, -92a-3p and -221-3p, and up-regulation of miR-122-5p was verified in the stable CAD patients when compared to other groups. The predicted targets of deregulated miRNAs were enriched in pathways connected to insulin signalling, inflammation and lipid metabolism. The iPSC-HLCs derived from stable CAD patients with extensive lesions had a distinct genetic miRNA profile possibly linked to metabolic dysfunction, potentially explaining the susceptibility to developing CAD. The iPSC-HLCs from acute CAD patients with only the acute rupture in otherwise healthy coronaries did not present a distinct miRNA profile, suggesting that hepatic miRNAs do not explain susceptibility to plaque rupture.


Asunto(s)
Enfermedad de la Arteria Coronaria , Células Madre Pluripotentes Inducidas , MicroARNs , Isquemia Miocárdica , Placa Aterosclerótica , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Enfermedad de la Arteria Coronaria/genética , Enfermedad de la Arteria Coronaria/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Metabolismo de los Lípidos/genética , Hepatocitos/metabolismo , Placa Aterosclerótica/metabolismo , Isquemia Miocárdica/metabolismo
8.
Atherosclerosis ; 361: 1-9, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36252457

RESUMEN

AIM: We aimed at identifying the shared biological processes underlying atherosclerosis-osteoporosis co/multimorbidity. METHODS: We performed gene set analysis (GSA) of whole-blood transcriptomic data to identify biological processes shared by the early markers of these two diseases. Early markers of diseases, carotid intima-media thickness (CIMT) for atherosclerosis and trabecular bone mineral density (BMD) from distal radius and tibia for osteoporosis, were used to categorize the study participants into cases and controls. Participants with high CIMT (>90th percentile) were defined as cases for subclinical atherosclerosis. Study population-based T-scores for BMD were calculated and T-score ≤ -1 was used for the definition of low BMD cases i.e., early indicator of osteoporosis. RESULTS: We did not identify any gene sets jointly associated with early markers of atherosclerosis and osteoporosis. We identified three novel and replicated 234 gene sets significantly associated with high CIMT with false discovery rate (FDR) ≤ 0.01. Only two genes, both related to the immune system, were identified to be associated with high CIMT by traditional differential gene expression analysis. However, none of the studied gene sets or individual genes were significantly associated with tibial or radial BMD. The three novel CIMT associated gene sets contained genes involved in copper homeostasis, neural crest cell migration and nicotinate and nicotinamide metabolism. The 234 replicated gene sets in this study are related to the immune system, hypoxia and apoptosis, consistent with the existing literature on atherosclerosis. CONCLUSIONS: This study identified novel biological processes associated with high CIMT but not with reduced BMD.


Asunto(s)
Aterosclerosis , Fenómenos Biológicos , Osteoporosis , Humanos , Grosor Intima-Media Carotídeo , Multimorbilidad , Transcriptoma , Finlandia , Estudios Transversales , Osteoporosis/epidemiología , Osteoporosis/genética , Osteoporosis/complicaciones , Aterosclerosis/diagnóstico , Aterosclerosis/epidemiología , Aterosclerosis/genética , Biomarcadores , Factores de Riesgo
9.
Epigenomics ; 14(18): 1105-1124, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36200237

RESUMEN

Aims & methods: The aim of this study was to characterize the methylation level of a polymorphically imprinted gene, VTRNA2-1/nc886, in human populations and somatic tissues.48 datasets, consisting of more than 30 tissues and >30,000 individuals, were used. Results: nc886 methylation status is associated with twin status and ethnic background, but the variation between populations is limited. Monozygotic twin pairs present concordant methylation, whereas ∼30% of dizygotic twin pairs present discordant methylation in the nc886 locus. The methylation levels of nc886 are uniform across somatic tissues, except in cerebellum and skeletal muscle. Conclusion: The nc886 imprint may be established in the oocyte, and, after implantation, the methylation status is stable, excluding a few specific tissues.


Asunto(s)
Metilación de ADN , Gemelos Monocigóticos , Humanos , Gemelos Monocigóticos/genética
10.
PLoS One ; 17(3): e0261481, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35294436

RESUMEN

BACKGROUND: In humans, the nc886 locus is a polymorphically imprinted metastable epiallele. Periconceptional conditions have an effect on the methylation status of nc886, and further, this methylation status is associated with health outcomes in later life, in line with the Developmental Origins of Health and Disease (DOHaD) hypothesis. Animal models would offer opportunities to study the associations between periconceptional conditions, nc886 methylation status and metabolic phenotypes further. Thus, we set out to investigate the methylation pattern of the nc886 locus in non-human mammals. DATA: We obtained DNA methylation data from the data repository GEO for mammals, whose nc886 gene included all three major parts of nc886 and had sequency similarity of over 80% with the human nc886. Our final sample set consisted of DNA methylation data from humans, chimpanzees, bonobos, gorillas, orangutangs, baboons, macaques, vervets, marmosets and guinea pigs. RESULTS: In human data sets the methylation pattern of nc886 locus followed the expected bimodal distribution, indicative of polymorphic imprinting. In great apes, we identified a unimodal DNA methylation pattern with 50% methylation level in all individuals and in all subspecies. In Old World monkeys, the between individual variation was greater and methylation on average was close to 60%. In guinea pigs the region around the nc886 homologue was non-methylated. Results obtained from the sequence comparison of the CTCF binding sites flanking the nc886 gene support the results on the DNA methylation data. CONCLUSIONS: Our results indicate that unlike in humans, nc886 is not a polymorphically imprinted metastable epiallele in non-human primates or in guinea pigs, thus implying that animal models are not applicable for nc886 research. The obtained data suggests that the nc886 region may be classically imprinted in great apes, and potentially also in Old World monkeys, but not in guinea pigs.


Asunto(s)
Metilación de ADN , Mamíferos , Animales , Sitios de Unión , Impresión Genómica , Cobayas
11.
Hum Mol Genet ; 31(10): 1720-1732, 2022 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-35077545

RESUMEN

Mitochondria have a complex communication network with the surrounding cell and can alter nuclear DNA methylation (DNAm). Variation in the mitochondrial DNA (mtDNA) has also been linked to differential DNAm. Genome-wide association studies have identified numerous DNAm quantitative trait loci, but these studies have not examined the mitochondrial genome. Herein, we quantified nuclear DNAm from blood and conducted a mitochondrial genome-wide association study of DNAm, with an additional emphasis on sex- and prediabetes-specific heterogeneity. We used the Young Finns Study (n = 926) with sequenced mtDNA genotypes as a discovery sample and sought replication in the Ludwigshafen Risk and Cardiovascular Health study (n = 2317). We identified numerous significant associations in the discovery phase (P < 10-9), but they were not replicated when accounting for multiple testing. In total, 27 associations were nominally replicated with a P < 0.05. The replication analysis presented no evidence of sex- or prediabetes-specific heterogeneity. The 27 associations were included in a joint meta-analysis of the two cohorts, and 19 DNAm sites associated with mtDNA variants, while four other sites showed haplogroup associations. An expression quantitative trait methylation analysis was performed for the identified DNAm sites, pinpointing two statistically significant associations. This study provides evidence of a mitochondrial genetic control of nuclear DNAm with little evidence found for sex- and prediabetes-specific effects. The lack of a comparable mtDNA data set for replication is a limitation in our study and further studies are needed to validate our results.


Asunto(s)
Genoma Mitocondrial , Estado Prediabético , Metilación de ADN/genética , ADN Mitocondrial/genética , Epigénesis Genética , Genoma Mitocondrial/genética , Estudio de Asociación del Genoma Completo/métodos , Humanos , Estado Prediabético/genética , Sitios de Carácter Cuantitativo/genética
12.
Clin Epigenetics ; 13(1): 227, 2021 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-34930449

RESUMEN

BACKGROUND: Women with a history of complications of pregnancy, including hypertensive disorders, gestational diabetes or an infant fetal growth restriction or preterm birth, are at higher risk for cardiovascular disease later in life. We aimed to examine differences in maternal DNA methylation following pregnancy complications. METHODS: Data on women participating in the Young Finns study (n = 836) were linked to the national birth registry. DNA methylation in whole blood was assessed using the Infinium Methylation EPIC BeadChip. Epigenome-wide analysis was conducted on differential CpG methylation at 850 K sites. Reproductive history was also modeled as a predictor of four epigenetic age indices. RESULTS: Fourteen significant differentially methylated sites were found associated with both history of pre-eclampsia and overall hypertensive disorders of pregnancy. No associations were found between reproductive history and any epigenetic age acceleration measure. CONCLUSIONS: Differences in epigenetic methylation profiles could represent pre-existing risk factors, or changes that occurred as a result of experiencing these complications.


Asunto(s)
Células Sanguíneas , Metilación de ADN/genética , Historia Reproductiva , Adulto , Área Bajo la Curva , Femenino , Finlandia , Estudio de Asociación del Genoma Completo , Humanos , Recién Nacido , Masculino , Modelos de Riesgos Proporcionales , Curva ROC , Análisis de Supervivencia
13.
Sci Adv ; 7(29)2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34261659

RESUMEN

Activation of the hypoxia-inducible factor (HIF) pathway reprograms energy metabolism. Hemoglobin (Hb) is the main carrier of oxygen. Using its normal variation as a surrogate measure for hypoxia, we explored whether lower Hb levels could lead to healthier metabolic profiles in mice and humans (n = 7175) and used Mendelian randomization (MR) to evaluate potential causality (n = 173,480). The results showed evidence for lower Hb levels being associated with lower body mass index, better glucose tolerance and other metabolic profiles, lower inflammatory load, and blood pressure. Expression of the key HIF target genes SLC2A4 and Slc2a1 in skeletal muscle and adipose tissue, respectively, associated with systolic blood pressure in MR analyses and body weight, liver weight, and adiposity in mice. Last, manipulation of murine Hb levels mediated changes to key metabolic parameters. In conclusion, low-end normal Hb levels may be favorable for metabolic health involving mild chronic activation of the HIF response.


Asunto(s)
Hipoxia , Hígado , Animales , Hemoglobinas/genética , Hemoglobinas/metabolismo , Hipoxia/genética , Hígado/metabolismo , Metaboloma , Ratones , Oxígeno/metabolismo
14.
Clin Epigenetics ; 13(1): 143, 2021 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-34294131

RESUMEN

BACKGROUND: Non-coding RNA 886 (nc886) is coded from a maternally inherited metastable epiallele. We set out to investigate the determinants and dynamics of the methylation pattern at the nc886 epiallele and how this methylation status associates with nc886 RNA expression. Furthermore, we investigated the associations between the nc886 methylation status or the levels of nc886 RNAs and metabolic traits in the YFS and KORA cohorts. The association between nc886 epiallele methylation and RNA expression was also validated in induced pluripotent stem cell (iPSC) lines. RESULTS: We confirm that the methylation status of the nc886 epiallele is mostly binomial, with individuals displaying either a non- or hemi-methylated status, but we also describe intermediately and close to fully methylated individuals. We show that an individual's methylation status is associated with the mother's age and socioeconomic status, but not with the individual's own genetics. Once established, the methylation status of the nc886 epiallele remains stable for at least 25 years. This methylation status is strongly associated with the levels of nc886 non-coding RNAs in serum, blood, and iPSC lines. In addition, nc886 methylation status associates with glucose and insulin levels during adolescence but not with the indicators of glucose metabolism or the incidence of type 2 diabetes in adulthood. However, the nc886-3p RNA levels also associate with glucose metabolism in adulthood. CONCLUSIONS: These results indicate that nc886 metastable epiallele methylation is tuned by the periconceptional conditions and it associates with glucose metabolism through the expression of the ncRNAs coded in the epiallele region.


Asunto(s)
Trastornos del Metabolismo de la Glucosa/genética , ARN no Traducido/análisis , Adulto , Metilación de ADN/genética , Metilación de ADN/fisiología , Epigénesis Genética , Humanos
15.
Cancers (Basel) ; 13(14)2021 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-34298752

RESUMEN

MicroRNAs are important in prostate cancer development, progression and metastasis. The aim of this study was to test microRNA expression profile in prostate tissue obtained from prostate cancer patients for associations with various prostate cancer related factors and to pinpoint the predicted target pathways for these microRNAs. Prostate tissue samples were obtained at prostatectomy from patients participating in a trial evaluating impact of pre-operative atorvastatin on serum prostate specific antigen (PSA) and Ki-67 expression in prostate tissue. Prostate tissue microRNA expression profiles were analyzed using OpenArray® MicroRNA Panel. Pathway enrichment analyses were conducted for predicted target genes of microRNAs that correlated significantly with studied factors. Eight microRNAs correlated significantly with studied factors of patients after Bonferroni multiple testing correction. MiR-485-3p correlated with serum HDL-cholesterol levels. In atorvastatin-treated subjects, miR-34c-5p correlated with a change in serum PSA and miR-138-3p with a change in total cholesterol. In the placebo arm, both miR-576-3p and miR-550-3p correlated with HDL-cholesterol and miR-627 with PSA. In pathway analysis, these eight microRNAs related significantly to several pathways relevant to prostate cancer. This study brings new evidence from the expression of prostate tissue microRNAs and related pathways that may link risk factors to prostate cancer and pinpoint new therapeutic possibilities.

16.
Sci Rep ; 11(1): 9203, 2021 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-33911114

RESUMEN

Preterm birth (PTB) is associated with increased risk of type 2 diabetes and neurocognitive impairment later in life. We analyzed for the first time the associations of PTB with blood miRNA levels in adulthood. We also investigated the relationship of PTB associated miRNAs and adulthood phenotypes previously linked with premature birth. Blood MicroRNA profiling, genome-wide gene expression analysis, computer-based cognitive testing battery (CANTAB) and serum NMR metabolomics were performed for Young Finns Study subjects (aged 34-49 years, full-term n = 682, preterm n = 84). Preterm birth (vs. full-term) was associated with adulthood levels of hsa-miR-29b-3p in a fully adjusted regression model (p = 1.90 × 10-4, FDR = 0.046). The levels of hsa-miR-29b-3p were down-regulated in subjects with PTB with appropriate birthweight for gestational age (p = 0.002, fold change [FC] = - 1.20) and specifically in PTB subjects with small birthweight for gestational age (p = 0.095, FC = - 1.39) in comparison to individuals born full term. Hsa-miR-29b-3p levels correlated with the expressions of its target-mRNAs BCL11A and CS and the gene set analysis results indicated a target-mRNA driven association between hsa-miR-29b-3p levels and Alzheimer's disease, Parkinson's disease, Insulin signaling and Regulation of Actin Cytoskeleton pathway expression. The level of hsa-miR-29b-3p was directly associated with visual processing and sustained attention in CANTAB test and inversely associated with serum levels of VLDL subclass component and triglyceride levels. In conlcusion, adult blood levels of hsa-miR-29b-3p were lower in subjects born preterm. Hsa-miR-29b-3p associated with cognitive function and may be linked with adulthood morbidities in subjects born preterm, possibly through regulation of gene sets related to neurodegenerative diseases and insulin signaling as well as VLDL and triglyceride metabolism.


Asunto(s)
Biomarcadores/sangre , Disfunción Cognitiva/epidemiología , Diabetes Mellitus Tipo 2/epidemiología , Enfermedades Metabólicas/epidemiología , MicroARNs/genética , Nacimiento Prematuro/fisiopatología , Adolescente , Adulto , Niño , Preescolar , Disfunción Cognitiva/sangre , Disfunción Cognitiva/genética , Diabetes Mellitus Tipo 2/sangre , Diabetes Mellitus Tipo 2/genética , Femenino , Finlandia/epidemiología , Estudios de Seguimiento , Perfilación de la Expresión Génica , Humanos , Recién Nacido , Masculino , Enfermedades Metabólicas/sangre , Enfermedades Metabólicas/genética , Persona de Mediana Edad , Embarazo , Pronóstico , Transducción de Señal
17.
Sci Rep ; 11(1): 7111, 2021 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-33782480

RESUMEN

We analysed whole blood genome-wide expression data to identify gene co-expression modules shared by early traits of osteoporosis and atherosclerosis. Gene expression was profiled for the Young Finns Study participants. Bone mineral density and content were measured as early traits of osteoporosis. Carotid and bulbus intima media thickness were measured as early traits of atherosclerosis. Joint association of the modules, identified with weighted co-expression analysis, with early traits of the diseases was tested with multivariate analysis. Among the six modules significantly correlated with early traits of both the diseases, two had significant (adjusted p-values (p.adj) < 0.05) and another two had suggestively significant (p.adj < 0.25) joint association with the two diseases after adjusting for age, sex, body mass index, smoking habit, alcohol consumption, and physical activity. The three most significant member genes from the significant modules were NOSIP, GXYLT2, and TRIM63 (p.adj ≤ 0.18). Genes in the modules were enriched with biological processes that have separately been found to be involved in either bone metabolism or atherosclerosis. The gene modules and their most significant member genes identified in this study support the osteoporosis-atherosclerosis comorbidity hypothesis and can provide new joint biomarkers for both diseases and their dual prevention.


Asunto(s)
Aterosclerosis/genética , Expresión Génica , Genoma Humano , Osteoporosis/genética , Adulto , Biomarcadores , Densidad Ósea , Estudios de Cohortes , Femenino , Finlandia , Humanos , Estilo de Vida , Masculino , Persona de Mediana Edad , Osteoporosis/diagnóstico por imagen , Reproducibilidad de los Resultados
18.
Obesity (Silver Spring) ; 29(2): 428-437, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33491305

RESUMEN

OBJECTIVE: This study aimed to investigate the role of cytokines as intermediates in the pathway from increased adiposity to disease. METHODS: BMI and circulating levels of up to 41 cytokines were measured in individuals from three Finnish cohort studies (n = 8,293). Mendelian randomization (MR) was used to assess the impact of BMI on circulating cytokines and the impact of BMI-driven cytokines on risk of obesity-related diseases. RESULTS: Observationally, BMI was associated with 19 cytokines. For every SD increase in BMI, causal effect estimates were strongest for hepatocyte growth factor, monocyte chemotactic protein-1 (MCP-1), and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and were as ratios of geometric means 1.13 (95% CI: 1.08-1.19), 1.08 (95% CI: 1.04-1.14), and 1.13 (95% CI: 1.04-1.21), respectively. TRAIL was associated with a small increase in the odds of coronary artery disease (odds ratio: 1.03; 95% CI: 1.00-1.06). There was inconsistent evidence for a protective role of MCP-1 against inflammatory bowel diseases. CONCLUSIONS: Observational and MR estimates of the effect of BMI on cytokine levels were generally concordant. There was little evidence for an effect of raised levels of BMI-driven cytokines on disease. These findings illustrate the challenges of MR when applied in the context of molecular mediation.


Asunto(s)
Adiposidad/fisiología , Citocinas/sangre , Obesidad/complicaciones , Índice de Masa Corporal , Estudios de Cohortes , Humanos
19.
Sci Rep ; 11(1): 611, 2021 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-33436758

RESUMEN

High blood pressure (BP) is a major risk factor for many noncommunicable diseases. The effect of mitochondrial DNA single-nucleotide polymorphisms (mtSNPs) on BP is less known than that of nuclear SNPs. We investigated the mitochondrial genetic determinants of systolic, diastolic, and mean arterial BP. MtSNPs were determined from peripheral blood by sequencing or with genome-wide association study SNP arrays in two independent Finnish cohorts, the Young Finns Study and the Finnish Cardiovascular Study, respectively. In total, over 4200 individuals were included. The effects of individual common mtSNPs, with an additional focus on sex-specificity, and aggregates of rare mtSNPs grouped by mitochondrial genes were evaluated by meta-analysis of linear regression and a sequence kernel association test, respectively. We accounted for the predicted pathogenicity of the rare variants within protein-encoding and the tRNA regions. In the meta-analysis of 87 common mtSNPs, we did not observe significant associations with any of the BP traits. Sex-specific and rare-variant analyses did not pinpoint any significant associations either. Our results are in agreement with several previous studies suggesting that mtDNA variation does not have a significant role in the regulation of BP. Future studies might need to reconsider the mechanisms thought to link mtDNA with hypertension.


Asunto(s)
ADN Mitocondrial/genética , Genoma Mitocondrial , Hipertensión/epidemiología , Mitocondrias/genética , Polimorfismo de Nucleótido Simple , Adulto , Presión Sanguínea , Estudios de Cohortes , ADN Mitocondrial/análisis , Femenino , Finlandia/epidemiología , Estudio de Asociación del Genoma Completo , Genotipo , Humanos , Hipertensión/genética , Masculino , Persona de Mediana Edad , Fenotipo , Factores de Riesgo
20.
Mol Psychiatry ; 26(8): 3858-3875, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-31748689

RESUMEN

Phylogenetic, developmental, and brain-imaging studies suggest that human personality is the integrated expression of three major systems of learning and memory that regulate (1) associative conditioning, (2) intentionality, and (3) self-awareness. We have uncovered largely disjoint sets of genes regulating these dissociable learning processes in different clusters of people with (1) unregulated temperament profiles (i.e., associatively conditioned habits and emotional reactivity), (2) organized character profiles (i.e., intentional self-control of emotional conflicts and goals), and (3) creative character profiles (i.e., self-aware appraisal of values and theories), respectively. However, little is known about how these temperament and character components of personality are jointly organized and develop in an integrated manner. In three large independent genome-wide association studies from Finland, Germany, and Korea, we used a data-driven machine learning method to uncover joint phenotypic networks of temperament and character and also the genetic networks with which they are associated. We found three clusters of similar numbers of people with distinct combinations of temperament and character profiles. Their associated genetic and environmental networks were largely disjoint, and differentially related to distinct forms of learning and memory. Of the 972 genes that mapped to the three phenotypic networks, 72% were unique to a single network. The findings in the Finnish discovery sample were blindly and independently replicated in samples of Germans and Koreans. We conclude that temperament and character are integrated within three disjoint networks that regulate healthy longevity and dissociable systems of learning and memory by nearly disjoint sets of genetic and environmental influences.


Asunto(s)
Carácter , Estudio de Asociación del Genoma Completo , Humanos , Personalidad/genética , Inventario de Personalidad , Filogenia , Temperamento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA