Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Environ Res ; 251(Pt 1): 118541, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38417656

RESUMEN

Aquatic ecosystems and potable water are being exploited and depleted due to urbanization and the encouragement of extensive industrialization, which induces the scarcity of pure water. However, current decontamination methods are limited and inefficient. Various innovative remediation strategies with novel nanomaterials have recently been demonstrated for wastewater treatment. Carbon dots (C-dots) and graphene quantum dots (GQ-dots) are the most recent frontiers in carbon nanomaterial-based adsorption studies. C-dots are extremely small (1-10 nm) quasi-spherical carbon nanoparticles (mostly sp3 hybridized carbon), whereas GQ-dots are fragments of graphene (1-20 nm) composed of primarily sp2 hybridized carbon. This article highlights the function of C-dots and GQ-dots with their specifications and characteristics for the efficient removal of organic and inorganic contaminants in water via adsorption chromatography. The alteration of adsorption attributes with the hybrid blending of these dots has been critically analyzed. Moreover, various top-down and bottom-up approaches for synthesizing C-dots and GQ-dots, which ultimately affect their morphology and structure, are described in detail. Finally, we review the research deficit in the adsorption of diverse pollutants, fabrication challenges, low molecular weight, self-agglomeration, and the future of the dots by providing research prospects and selectivity and sensitivity perspectives, the importance of post-adsorption optimization strategies and the path toward scalability at the tail of the article.


Asunto(s)
Carbono , Grafito , Puntos Cuánticos , Contaminantes Químicos del Agua , Puntos Cuánticos/química , Grafito/química , Adsorción , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/química , Carbono/química , Purificación del Agua/métodos , Cromatografía/métodos , Descontaminación/métodos
2.
Chemosphere ; 346: 140570, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37918534

RESUMEN

River Yamuna is the largest tributary of the Ganges with great economic importance, and provides water for about 57 million people and accounts for more than 70% of Delhi's water supply. Various pollution indices and chemometric methods were used to investigate heavy metal pollution, associated risks, and probable sources in the upper Yamuna river water. A total of 56 river water samples, 28 each in pre and post-monsoon season were collected and analysed for 15 heavy metals. The findings reveal that Al (38.66 ± 21.14 µg/L), As (16.52 ± 15.81 µg/L), and Mn (41.06 ± 89.25 µg/L) in pre-monsoon and Al (45.77 ± 29.46 µg/L), As (10.30 ± 12.15 µg/L), Fe (48.03 ± 81.11 µg/L), and Mn (31.02 ± 70.13 µg/L) in post-monsoon exceeded the Bureau of Indian Standards (BIS) acceptable limits. The pollution indices (HPI, NPI, HEI, and Cd) indicate that most locations are low to moderately polluted, except for the lower catchment. Health indices, i.e., hazard Index (HI) and incremental lifetime cancer risk (ILCR), suggest that the prolonged consumption of river water may cause potential human health hazards. In contrast, the water is suitable for domestic and other uses as the dermal risk is less prominent. The ecological risk index (ERI) of pre (0.22-58.75) and post-monsoon (0.12-44.21) were in the low-risk category (<110), indicating no ecological risk associated with heavy metals. In pre and post-monsoon, four principal components (PCs) described 73.97% and 76.18% of the total variance respectively, suggesting the mixed impact of numerous geogenic and anthropogenic sources in the region's water chemistry. Cluster analysis demonstrates that the lower catchment samples (National Capital Region, Delhi) significantly vary from each other due to wastewater discharge, industrialisation, and rapid urbanization, while the upper and mid-catchment samples are less distinct. Hence, more than 90% of the Yamuna water is extracted from the upper region; present findings may aid in developing an effective catchment scale management strategy.


Asunto(s)
Metales Pesados , Contaminantes Químicos del Agua , Humanos , Ríos , Monitoreo del Ambiente/métodos , Contaminantes Químicos del Agua/análisis , Quimiometría , Medición de Riesgo , Metales Pesados/análisis , India , Agua/análisis
3.
Environ Geochem Health ; 45(8): 5481-5513, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37183216

RESUMEN

Chemical pesticides in the hydrogeological system are a global concern as they pose a severe threat to humans and other organisms. In agriculture, around 4.12 million tonnes of pesticides were used globally in 2018, which is 50% more than in the 1990s. Various pesticides detected in the hydrogeological system of India since the 1990s have been documented and reviewed to understand the prevalence, source, history and degradation pathways. This review contributes to a better understanding of existing pesticide pollution and the state of hydrogeological resource deterioration. Small to excess levels of pesticide residues were detected in groundwater, surface water, soil, and sediments. Pesticides that were most commonly and predominantly found in the hydrogeological system were HCHs, DDTs, endosulfan, heptachlor, drins (aldrin, dieldrin, endrin), chlordane etc. ß and γ-HCH isomers among HCHs, whereas p,p'-DDT and p,p'-DDE among the DDTs were detected most prevalently. In many regions, pesticide residue levels in water have exceeded the maximum residue limits of WHO and BIS, while those in soils and sediments have exceeded the threshold effect level and probable effect level. Higher pesticide residues were detected in the water resources of rural agricultural areas compared to peri-urban or urban areas. A positive correlation of pesticide residues between water resources and soil has been observed in some regions, suggesting a similar contamination source. Diagnostic ratios of pesticides reveal their source, history and degradation pathways. Diagnostic ratios observed in various studies conducted in India suggest historical as well as recent use of banned pesticides. Strengthening current policies and regulations, monitoring pesticide use, changes in pesticide application practices, awareness among farmers, and the use of prominent removal techniques are necessary to tackle pesticide contamination in India.


Asunto(s)
Hidrocarburos Clorados , Residuos de Plaguicidas , Plaguicidas , Contaminantes Químicos del Agua , Humanos , Plaguicidas/análisis , Residuos de Plaguicidas/análisis , Hidrocarburos Clorados/análisis , Prevalencia , Contaminantes Químicos del Agua/análisis , DDT/análisis , Diclorodifenil Dicloroetileno , Suelo/química , Agua , Monitoreo del Ambiente/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA