Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Aquat Toxicol ; 265: 106762, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38000135

RESUMEN

Animal-based sensors have been increasingly applied to many water monitoring systems and ecological studies. One of the staple organisms used as living sensors for such systems is Daphnia. This organism has been extensively studied and, with time, used in many toxicological and pharmaceutical bioassays, often used for exploring the ecology of freshwater communities. One of its behaviours used for evaluating the state of the aquatic environment is phototaxis. A disruption in the predicted behaviour is interpreted as a sign of stress and forms the basis for further investigation. However, phototaxis is a result of complex processes counteracting and interacting with each other. Predator presence, food quality, body pigmentation and other factors can greatly affect the predicted phototactic response, hampering its reliability as a bioindicator. Therefore, a holistic approach and meticulous documentation of the methods are needed for the correct interpretation of this behavioural indicator. In this review, we present the current methods used for studying phototaxis, the factors affecting it and proposed ways to optimise the reliability of the results.


Asunto(s)
Contaminantes Químicos del Agua , Animales , Contaminantes Químicos del Agua/toxicidad , Fototaxis , Reproducibilidad de los Resultados , Daphnia/fisiología
2.
Bioinspir Biomim ; 19(1)2023 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-37963398

RESUMEN

Rapidly intensifying global warming and water pollution calls for more efficient and continuous environmental monitoring methods. Biohybrid systems connect mechatronic components to living organisms and this approach can be used to extract data from the organisms. Compared to conventional monitoring methods, they allow for a broader data collection over long periods, minimizing the need for sampling processes and human labour. We aim to develop a methodology for creating various bioinspired entities, here referred to as 'biohybrids', designed for long-term aquatic monitoring. Here, we test several aspects of the development of the biohybrid entity: autonomous power source, lifeform integration and partial biodegradability. An autonomous power source was supplied by microbial fuel cells which exploit electron flows from microbial metabolic processes in the sediments. Here, we show that by stacking multiple cells, sufficient power can be supplied. We integrated lifeforms into the developed bioinspired entity which includes organisms such as the zebra musselDreissena polymorphaand water fleaDaphniaspp. The setups developed allowed for observing their stress behaviours. Through this, we can monitor changes in the environment in a continuous manner. The further development of this approach will allow for extensive, long-term aquatic data collection and create an early-warning monitoring system.


Asunto(s)
Monitoreo del Ambiente , Contaminación del Agua , Humanos , Monitoreo del Ambiente/métodos
3.
Sensors (Basel) ; 23(5)2023 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-36904926

RESUMEN

Environmental monitoring should be minimally disruptive to the ecosystems that it is embedded in. Therefore, the project Robocoenosis suggests using biohybrids that blend into ecosystems and use life forms as sensors. However, such a biohybrid has limitations regarding memory-as well as power-capacities, and can only sample a limited number of organisms. We model the biohybrid and study the degree of accuracy that can be achieved by using a limited sample. Importantly, we consider potential misclassification errors (false positives and false negatives) that lower accuracy. We suggest the method of using two algorithms and pooling their estimations as a possible way of increasing the accuracy of the biohybrid. We show in simulation that a biohybrid could improve the accuracy of its diagnosis by doing so. The model suggests that for the estimation of the population rate of spinning Daphnia, two suboptimal algorithms for spinning detection outperform one qualitatively better algorithm. Further, the method of combining two estimations reduces the number of false negatives reported by the biohybrid, which we consider important in the context of detecting environmental catastrophes. Our method could improve environmental modeling in and outside of projects such as Robocoenosis and may find use in other fields.


Asunto(s)
Ecosistema , Monitoreo del Ambiente , Simulación por Computador
4.
Biol Cybern ; 115(6): 615-628, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34812929

RESUMEN

Facing the threat of rapidly worsening water quality, there is an urgent need to develop novel approaches of monitoring its global supplies and early detection of environmental fluctuations. Global warming, urban growth and other factors have threatened not only the freshwater supply but also the well-being of many species inhabiting it. Traditionally, laboratory-based studies can be both time and money consuming and so, the development of a real-time, continuous monitoring method has proven necessary. The use of autonomous, self-actualizing entities became an efficient way of monitoring the environment. The Microbial Fuel Cells (MFC) will be investigated as an alternative energy source to allow for these entities to self-actualize. This concept has been improved with the use of various lifeforms in the role of biosensors in a structure called "biohybrid" which we aim to develop further within the framework of project Robocoenosis relying on animal-robot interaction. We introduce a novel concept of a fully autonomous biohybrid agent with various lifeforms in the role of biosensors. Herein, we identify most promising organisms in the context of underwater robotics, among others Dreissena polymorpha, Anodonta cygnaea, Daphnia sp. and various algae. Special focus is placed on the "ecosystem hacking" based on their interaction with the electronic parts. This project uses Austrian lakes of various trophic levels (Millstättersee, Hallstättersee and Neusiedlersee) as case studies and as a "proof of concept".


Asunto(s)
Técnicas Biosensibles , Dreissena , Robótica , Animales , Ecosistema , Agua Dulce
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA