Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
1.
Nat Genet ; 56(6): 1300-1309, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38724748

RESUMEN

Concurrent readout of sequence and base modifications from long unamplified DNA templates by Pacific Biosciences of California (PacBio) single-molecule sequencing requires large amounts of input material. Here we adapt Tn5 transposition to introduce hairpin oligonucleotides and fragment (tagment) limiting quantities of DNA for generating PacBio-compatible circular molecules. We developed two methods that implement tagmentation and use 90-99% less input than current protocols: (1) single-molecule real-time sequencing by tagmentation (SMRT-Tag), which allows detection of genetic variation and CpG methylation; and (2) single-molecule adenine-methylated oligonucleosome sequencing assay by tagmentation (SAMOSA-Tag), which uses exogenous adenine methylation to add a third channel for probing chromatin accessibility. SMRT-Tag of 40 ng or more human DNA (approximately 7,000 cell equivalents) yielded data comparable to gold standard whole-genome and bisulfite sequencing. SAMOSA-Tag of 30,000-50,000 nuclei resolved single-fiber chromatin structure, CTCF binding and DNA methylation in patient-derived prostate cancer xenografts and uncovered metastasis-associated global epigenome disorganization. Tagmentation thus promises to enable sensitive, scalable and multimodal single-molecule genomics for diverse basic and clinical applications.


Asunto(s)
Metilación de ADN , Neoplasias de la Próstata , Humanos , Animales , Masculino , Neoplasias de la Próstata/genética , Ratones , Análisis de Secuencia de ADN/métodos , Cromatina/genética , ADN/genética , Elementos Transponibles de ADN/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Islas de CpG/genética , Línea Celular Tumoral , Factor de Unión a CCCTC/genética , Factor de Unión a CCCTC/metabolismo , Transposasas
2.
Genes Dev ; 38(5-6): 253-272, 2024 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-38565249

RESUMEN

Oncogenic activation of MYC in cancers predominantly involves increased transcription rather than coding region mutations. However, MYC-dependent lymphomas frequently acquire point mutations in the MYC phosphodegron, including at threonine 58 (T58), where phosphorylation permits binding via the FBW7 ubiquitin ligase triggering MYC degradation. To understand how T58 phosphorylation functions in normal cell physiology, we introduced an alanine mutation at T58 (T58A) into the endogenous c-Myc locus in the mouse germline. While MYC-T58A mice develop normally, lymphomas and myeloid leukemias emerge in ∼60% of adult homozygous T58A mice. We found that primitive hematopoietic progenitor cells from MYC-T58A mice exhibit aberrant self-renewal normally associated with hematopoietic stem cells (HSCs) and up-regulate a subset of MYC target genes important in maintaining stem/progenitor cell balance. In lymphocytes, genomic occupancy by MYC-T58A was increased at all promoters compared with WT MYC, while genes differentially expressed in a T58A-dependent manner were significantly more proximal to MYC-bound enhancers. MYC-T58A lymphocyte progenitors exhibited metabolic alterations and decreased activation of inflammatory and apoptotic pathways. Our data demonstrate that a single point mutation stabilizing MYC is sufficient to skew target gene expression, producing a profound gain of function in multipotential hematopoietic progenitors associated with self-renewal and initiation of lymphomas and leukemias.


Asunto(s)
Proteína 7 que Contiene Repeticiones F-Box-WD , Neoplasias Hematológicas , Linfoma , Proteínas Proto-Oncogénicas c-myc , Animales , Ratones , Células Germinativas/metabolismo , Células Madre Hematopoyéticas/metabolismo , Mutación Puntual , Proteínas Proto-Oncogénicas c-myc/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo , Proteína 7 que Contiene Repeticiones F-Box-WD/metabolismo
3.
bioRxiv ; 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38562687

RESUMEN

Progression through the G1 phase of the cell cycle is the most highly regulated step in cellular division. We employed a chemogenomics approach to discover novel cellular networks that regulate cell cycle progression. This approach uncovered functional clusters of genes that altered sensitivity of cells to inhibitors of the G1/S transition. Mutation of components of the Polycomb Repressor Complex 2 rescued growth inhibition caused by the CDK4/6 inhibitor palbociclib, but not to inhibitors of S phase or mitosis. In addition to its core catalytic subunits, mutation of the PRC2.1 accessory protein MTF2, but not the PRC2.2 protein JARID2, rendered cells resistant to palbociclib treatment. We found that PRC2.1 (MTF2), but not PRC2.2 (JARID2), was critical for promoting H3K27me3 deposition at CpG islands genome-wide and in promoters. This included the CpG islands in the promoter of the CDK4/6 cyclins CCND1 and CCND2, and loss of MTF2 lead to upregulation of both CCND1 and CCND2. Our results demonstrate a role for PRC2.1, but not PRC2.2, in promoting G1 progression.

4.
bioRxiv ; 2023 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-37961183

RESUMEN

Oncogenic activation of MYC in cancers predominantly involves increased transcription rather than coding region mutations. However, MYC-dependent lymphomas frequently contain point mutations in the MYC phospho-degron, including at threonine-58 (T58), where phosphorylation permits binding by the FBW7 ubiquitin ligase triggering MYC degradation. To understand how T58 phosphorylation functions in normal cell physiology, we introduced an alanine mutation at T58 (T58A) into the endogenous c-Myc locus in the mouse germline. While MYC-T58A mice develop normally, lymphomas and myeloid leukemias emerge in ~60% of adult homozygous T58A mice. We find that primitive hematopoietic progenitor cells from MYC-T58A mice exhibit aberrant self-renewal normally associated with hematopoietic stem cells (HSCs) and upregulate a subset of Myc target genes important in maintaining stem/progenitor cell balance. Genomic occupancy by MYC-T58A was increased at all promoters, compared to WT MYC, while genes differentially expressed in a T58A-dependent manner were significantly more proximal to MYC-bound enhancers. MYC-T58A lymphocyte progenitors exhibited metabolic alterations and decreased activation of inflammatory and apoptotic pathways. Our data demonstrate that a single point mutation in Myc is sufficient to produce a profound gain of function in multipotential hematopoietic progenitors associated with self-renewal and initiation of lymphomas and leukemias.

5.
Infect Immun ; 91(12): e0031123, 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-37909750

RESUMEN

Pulmonary host defense is critical for the control of lung infection and inflammation. An increased expression and activity of Toll-like receptor 4 (TLR4) induce phagocytic uptake/clearance and inflammation against Gram-negative bacteria. In this study, we addressed the mechanistic aspect of the immunomodulatory activity of the TLR4-interacting SPA4 peptide (amino acid sequence GDFRYSDGTPVNYTNWYRGE) against Escherichia coli. Binding of the SPA4 peptide to bacteria and direct anti-bacterial effects were investigated using flow cytometric, microscopic, and bacteriological methods. The bacterial uptake and inflammatory cytokine response were studied in dendritic cells expressing endogenous basal level of TLR4 or overexpressing TLR4. The subcellular distribution and co-localization of TLR4 and bacteria were investigated by immunocytochemistry. Furthermore, we studied the cellular expression and co-localization of endoplasmic reticulum (ER) molecules (calnexin and ER membrane protein complex subunit 1; EMC1) with lysosomal-associated membrane protein 1 (LAMP1) in cells infected with E. coli and treated with the SPA4 peptide. Simultaneously, the expression of histone H2A protein was quantitated by immunoblotting. Our results demonstrate no binding or direct killing of the bacteria by SPA4 peptide. Instead, it induces the uptake and localization of E. coli in the phagolysosomes for lysis and simultaneously suppresses the secreted levels of TNF-α. Overexpression of TLR4 further augments the pro-phagocytic and anti-inflammatory activity of SPA4 peptide. A time-dependent change in subcellular distribution of TLR4 and an increased co-localization of TLR4 with E. coli in SPA4 peptide-treated cells suggest an enhanced recognition and internalization of bacteria in conjugation with TLR4. Furthermore, an increased co-localization of calnexin and EMC1 with LAMP1 indicates the involvement of ER in pro-phagocytic activity of SPA4 peptide. Simultaneous reduction in secreted amounts of TNF-α coincides with suppressed histone H2A protein expression in the SPA4 peptide-treated cells. These results provide initial insights into the plausible role of ER and histones in the TLR4-immunomodulatory activity of SPA4 peptide against Gram-negative bacteria.


Asunto(s)
Escherichia coli , Receptor Toll-Like 4 , Humanos , Receptor Toll-Like 4/metabolismo , Escherichia coli/metabolismo , Histonas , Factor de Necrosis Tumoral alfa/metabolismo , Calnexina/metabolismo , Inflamación/metabolismo , Retículo Endoplásmico/metabolismo , Lipopolisacáridos/farmacología
6.
Nat Struct Mol Biol ; 30(10): 1571-1581, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37696956

RESUMEN

Nearly all essential nuclear processes act on DNA packaged into arrays of nucleosomes. However, our understanding of how these processes (for example, DNA replication, RNA transcription, chromatin extrusion and nucleosome remodeling) occur on individual chromatin arrays remains unresolved. Here, to address this deficit, we present SAMOSA-ChAAT: a massively multiplex single-molecule footprinting approach to map the primary structure of individual, reconstituted chromatin templates subject to virtually any chromatin-associated reaction. We apply this method to distinguish between competing models for chromatin remodeling by the essential imitation switch (ISWI) ATPase SNF2h: nucleosome-density-dependent spacing versus fixed-linker-length nucleosome clamping. First, we perform in vivo single-molecule nucleosome footprinting in murine embryonic stem cells, to discover that ISWI-catalyzed nucleosome spacing correlates with the underlying nucleosome density of specific epigenomic domains. To establish causality, we apply SAMOSA-ChAAT to quantify the activities of ISWI ATPase SNF2h and its parent complex ACF on reconstituted nucleosomal arrays of varying nucleosome density, at single-molecule resolution. We demonstrate that ISWI remodelers operate as density-dependent, length-sensing nucleosome sliders, whose ability to program DNA accessibility is dictated by single-molecule nucleosome density. We propose that the long-observed, context-specific regulatory effects of ISWI complexes can be explained in part by the sensing of nucleosome density within epigenomic domains. More generally, our approach promises molecule-precise views of the essential processes that shape nuclear physiology.


Asunto(s)
Cromatina , Nucleosomas , Animales , Ratones , Histonas/metabolismo , ADN , Ensamble y Desensamble de Cromatina , Adenosina Trifosfatasas/metabolismo , Mamíferos/genética
7.
J Clin Oncol ; 41(27): 4406-4415, 2023 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-37478391

RESUMEN

PURPOSE: Bladder-sparing trimodal therapy (TMT) is an alternative to radical cystectomy (RC) according to international guidelines. However, there are limited data to guide management of nonmetastatic clinically node-positive bladder cancer (cN+ M0 BCa). We performed a multicenter retrospective analysis of survival outcomes in node-positive patients to inform practice. METHODS: Data from patients diagnosed with cN+ M0 BCa were collected from participating UK Oncology centers offering both TMT and RC. Overall survival (OS) and progression-free survival (PFS) outcomes were collected with details of treatment and clinical factors. RESULTS: A total of 287 patients with cN+ M0 BCa were included in the survival analysis. Median OS across all patients was 1.55 years (95% CI, 1.35 to 1.82 years). Receiving radical treatments was associated with improved OS (hazard ratio [HR], 0.32; 95% CI, 0.23 to 0.44; P < .001) compared with receiving palliative treatment. Radically treated patients (n = 163) received RC (n = 76) or radical dose radiotherapy (RT, n = 87); choice of radical treatment showed no association with OS (HR, 0.94; 95% CI, 0.63 to 1.41; P = .76) or PFS (HR, 0.74; 95% CI, 0.50 to 1.08; P = .12) on multivariable analysis. CONCLUSION: Patient cohorts with cN+ M0 BCa had equivalent survival outcomes whether treated with surgery or radical RT. Given the known morbidities of RC-in a patient group with poor survival-this study confirms that bladder-sparing TMT treatment should be a treatment option available to all patients with cN+ M0 BCa.


Asunto(s)
Neoplasias de la Vejiga Urinaria , Vejiga Urinaria , Humanos , Cistectomía/efectos adversos , Estudios Retrospectivos , Resultado del Tratamiento , Neoplasias de la Vejiga Urinaria/radioterapia , Neoplasias de la Vejiga Urinaria/cirugía
8.
J Immunother Cancer ; 11(5)2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37230537

RESUMEN

BACKGROUND: Cyclin-dependent kinase 4/6 inhibitors (CDK4/6i) combined with endocrine therapy are a mainstay treatment for hormone receptor-positive breast cancer. While their principal mechanism is inhibition of cancer cell proliferation, preclinical and clinical evidence suggests that CDK4/6i can also promote antitumor T-cell responses. However, this pro-immunogenic property is yet to be successfully harnessed in the clinic, as combining CDK4/6i with immune checkpoint blockade (ICB) has not shown a definitive benefit in patients. METHOD: We performed an in-depth analysis of the changes in the tumor immune microenvironment and systemic immune modulation associated with CDK4/6i treatment in muring breast cancer models and in patients with breast cancer using high dimensional flow cytometry and RNA sequencing. Gain and loss of function in vivo experiments employing cell transfer and depletion antibody were performed to uncover immune cell populations critical for CDK4/6i-mediated stimulation of antitumor immunity. RESULTS: We found that loss of dendritic cells (DCs) within the tumor microenvironment resulting from CDK4/6 inhibition in bone marrow progenitors is a major factor limiting antitumor immunity after CDK4/6i and ICB. Consequently, restoration of DC compartment by adoptively transferring ex vivo differentiated DCs to mice treated with CDK4/6i and ICB therapy enabled robust tumor inhibition. Mechanistically, the addition of DCs promoted the induction of tumor-localized and systemic CD4 T-cell responses in mice receiving CDK4/6i-ICB-DC combination therapy, as characterized by enrichment of programmed cell death protein-1-negative T helper (Th)1 and Th2 cells with an activated phenotype. CD4 T-cell depletion abrogated the antitumor benefit of CDK4/6i-ICB-DC combination, with outgrowing tumors displaying an increased proportion of terminally exhausted CD8 T cells. CONCLUSIONS: Our findings suggest that CDK4/6i-mediated DC suppression limits CD4 T-cell responses essential for the sustained activity of CD8 T cells and tumor inhibition. Furthermore, they imply that restoring DC-CD4 T-cell crosstalk via DC transfer enables effective breast cancer immunity in response to CDK4/6i and ICB treatment.


Asunto(s)
Linfocitos T CD4-Positivos , Inhibidores de Puntos de Control Inmunológico , Ratones , Animales , Inhibidores de Puntos de Control Inmunológico/farmacología , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Línea Celular Tumoral , Linfocitos T Colaboradores-Inductores , Células Dendríticas
9.
J Med Genet ; 60(1): 41-47, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-35121648

RESUMEN

PURPOSE: To determine the cost-effectiveness of annual renal imaging surveillance (RIS) in hereditary leiomyomatosis and renal cell cancer (HLRCC). HLRCC is associated with a 21% risk to age 70 years of RCC. Presentations with advanced renal cell cancer (RCC) are associated with poor outcomes whereas RIS detects early-stage RCC; however, evidence for the cost-effectiveness of RIS is lacking. METHODS: We developed a decision-analytic model to compare, at different age starting points (11 years, 18 years, 40 years, 60 years), the costs and benefits of lifetime contrast-enhanced renal MRI surveillance (CERMRIS) vs no surveillance in HLRCC. Benefits were measured in life-years gained (LYG), quality-adjusted life years (QALYs) and costs in British Pounds Sterling (GBP). Net monetary benefit (NMB) was calculated using a cost-effectiveness threshold of £20 000/QALY. One-way sensitivity and probabilistic analyses were also performed. RESULTS: In the base-case 11-year age cohort, surveillance was cost-effective (Incremental_NMB=£3522 (95% CI -£2747 to £7652); Incremental_LYG=1.25 (95% CI 0.30 to 1.86); Incremental_QALYs=0.29 (95% CI 0.07 to 0.43)] at an additional mean discounted cost of £2185/patient (95% CI £430 to £4144). Surveillance was also cost-effective in other age cohorts and dominated a no surveillance strategy in the 40 year cohort [Incremental_NMB=£12 655 (95% CIs -£709 to £21 134); Incremental_LYG=1.52 (95% CI 0.30 to 2.26); Incremental_QALYs=0.58 (95% CI 0.12 to 0.87) with a cost saving of £965/patient (95% CI -£4202 to £2652). CONCLUSION: Annual CERMRI in HLRCC is cost-effective across age groups modelled.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Leiomiomatosis , Femenino , Humanos , Anciano , Niño , Carcinoma de Células Renales/diagnóstico , Carcinoma de Células Renales/epidemiología , Carcinoma de Células Renales/genética , Análisis Costo-Beneficio , Leiomiomatosis/diagnóstico , Leiomiomatosis/epidemiología , Leiomiomatosis/genética , Neoplasias Renales/diagnóstico , Neoplasias Renales/epidemiología , Neoplasias Renales/genética , Años de Vida Ajustados por Calidad de Vida
10.
Acc Chem Res ; 55(16): 2191-2200, 2022 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-35878953

RESUMEN

Fuel cells (FCs), water electrolyzers (WEs), unitized regenerative fuel cells (URFCs), and metal-air batteries (MABs) are among the emerging electrochemical technologies for energy storage, fuel (H2), oxidant (O2), and clean energy production. Their commercial applications are hindered by the low oxygen reduction reaction/oxygen evolution reaction (ORR/OER) bifunctional activity (for URFCs and MABs), OER selectivity (brine electrolysis in seawater and Martian environments), and high cost of the benchmark electrocatalysts (OER: RuO2, IrO2 and ORR: Pt/C) which affects the performance and affordability of the devices. Low-cost electrocatalysts with highly symmetric ORR/OER bifunctional activity and high OER selectivity are crucial for large-scale FC, WE, URFC, and MAB application. Recent studies have revealed that tuning the structure of pyrochlore oxides provides a pathway to enhancing OER and ORR activity over a wide range of pH. Pyrochlore oxides commonly contain a cubic A2B2O7-x structure with two types of tetrahedrally coordinated O atoms containing (1) A-O-A and (2) A-O-B types with a cationic radii mismatch of rA/rB > 1.5 and propensity toward oxygen vacancy formation. The variety of pyrochlore oxides and their tunable properties make them attractive for a wide spectrum of applications. Among all the metal oxides, Ru-based pyrochlores (e.g., Pb2Ru2O7-x) exhibit the best bifunctional oxygen electrocatalytic activity, i.e., low bifunctionality index (BI), in alkaline medium. Furthermore, pyrochlores exhibit high OER selectivity in brine electrolytes due to the presence of surface oxygen vacancies, making them suitable for space applications (brine electrolysis on Mars) and coastal hydrogen generation. Their bifunctional activity and selectivity can be further amplified by (1) substituting "A" and "B" sites of pyrochlores (AA'BB'O7-x), (2) tuning metal oxidation states of A and B by varying synthesis conditions, and (3) modulating oxygen vacancy concentration, each of which yield favorable structural and electronic variations. In recent years, research on the synthesis and understanding of pyrochlores has significantly enhanced their viability, offering a new horizon in the quest for economical and active electrocatalysts. However, an account that focuses on critical developments in this field is still lacking.In this Account, we focus on the recent development of a variety of pyrochlore electrocatalysts to understand intrinsic structure-activity-selectivity-stability relationships in these materials. Recent developments and applications of pyrochlore-based electrocatalysts are discussed under the following headings: (1) modulation of crystal and electronic structure of pyrochlores, (2) structure-activity-stability relationships of different pyrochlores for OER and ORR, (3) development of OER-selective pyrochlores for brine electrolysis, and (4) the application of pyrochlores in electrochemical devices. Finally, we highlight some unaddressed issues such as the precise identification of active sites, which can be addressed in the future through advanced in situ and ex situ characterization techniques coupled with the density functional theory-based analyses. This Account provides foundational understanding to guide the comprehensive development of highly active, selective, stable and low-cost structurally engineered pyrochlores for high performance electrochemical devices.


Asunto(s)
Marte , Oxígeno , Medio Ambiente Extraterrestre , Niobio , Óxidos/química , Oxígeno/química
11.
PLoS Med ; 19(6): e1003998, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35671327

RESUMEN

BACKGROUND: STAMPEDE has previously reported that radiotherapy (RT) to the prostate improved overall survival (OS) for patients with newly diagnosed prostate cancer with low metastatic burden, but not those with high-burden disease. In this final analysis, we report long-term findings on the primary outcome measure of OS and on the secondary outcome measures of symptomatic local events, RT toxicity events, and quality of life (QoL). METHODS AND FINDINGS: Patients were randomised at secondary care sites in the United Kingdom and Switzerland between January 2013 and September 2016, with 1:1 stratified allocation: 1,029 to standard of care (SOC) and 1,032 to SOC+RT. No masking of the treatment allocation was employed. A total of 1,939 had metastatic burden classifiable, with 42% low burden and 58% high burden, balanced by treatment allocation. Intention-to-treat (ITT) analyses used Cox regression and flexible parametric models (FPMs), adjusted for stratification factors age, nodal involvement, the World Health Organization (WHO) performance status, regular aspirin or nonsteroidal anti-inflammatory drug (NSAID) use, and planned docetaxel use. QoL in the first 2 years on trial was assessed using prospectively collected patient responses to QLQ-30 questionnaire. Patients were followed for a median of 61.3 months. Prostate RT improved OS in patients with low, but not high, metastatic burden (respectively: 202 deaths in SOC versus 156 in SOC+RT, hazard ratio (HR) = 0·64, 95% CI 0.52, 0.79, p < 0.001; 375 SOC versus 386 SOC+RT, HR = 1.11, 95% CI 0.96, 1.28, p = 0·164; interaction p < 0.001). No evidence of difference in time to symptomatic local events was found. There was no evidence of difference in Global QoL or QLQ-30 Summary Score. Long-term urinary toxicity of grade 3 or worse was reported for 10 SOC and 10 SOC+RT; long-term bowel toxicity of grade 3 or worse was reported for 15 and 11, respectively. CONCLUSIONS: Prostate RT improves OS, without detriment in QoL, in men with low-burden, newly diagnosed, metastatic prostate cancer, indicating that it should be recommended as a SOC. TRIAL REGISTRATION: ClinicalTrials.gov NCT00268476, ISRCTN.com ISRCTN78818544.


Asunto(s)
Próstata , Neoplasias de la Próstata , Docetaxel/uso terapéutico , Humanos , Masculino , Próstata/patología , Neoplasias de la Próstata/patología , Calidad de Vida , Suiza/epidemiología
12.
Mol Cell ; 82(11): 2098-2112.e4, 2022 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-35597239

RESUMEN

The critical role of the INO80 chromatin remodeling complex in transcription is commonly attributed to its nucleosome sliding activity. Here, we have found that INO80 prefers to mobilize hexasomes over nucleosomes. INO80's preference for hexasomes reaches up to ∼60 fold when flanking DNA overhangs approach ∼18-bp linkers in yeast gene bodies. Correspondingly, deletion of INO80 significantly affects the positions of hexasome-sized particles within yeast genes in vivo. Our results raise the possibility that INO80 promotes nucleosome sliding by dislodging an H2A-H2B dimer, thereby making a nucleosome transiently resemble a hexasome. We propose that this mechanism allows INO80 to rapidly mobilize nucleosomes at promoters and hexasomes within gene bodies. Rapid repositioning of hexasomes that are generated in the wake of transcription may mitigate spurious transcription. More generally, such versatility may explain how INO80 regulates chromatin architecture during the diverse processes of transcription, replication, and repair.


Asunto(s)
Nucleosomas , Proteínas de Saccharomyces cerevisiae , Cromatina/genética , Ensamble y Desensamble de Cromatina , Histonas/metabolismo , Nucleosomas/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
13.
J Invest Dermatol ; 142(5): 1372-1380.e5, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-34695414

RESUMEN

Previously, we discovered antigen-presenting cells to express DC-HIL receptor and to secrete its soluble form (soluble DC-HIL [sDC-HIL]), both of which bind to syndecan-4 on T cells and endothelial cells (ECs), with the former binding attenuating T-cell function and the latter binding promoting angiogenesis. In this study, we examined the effects of sDC-HIL binding to EC on T-cell extravasation using an allergic contact dermatitis model in mice. The hapten oxazolone applied to ear skin in sensitized mice upregulated cutaneous expression of sDC-HIL, which downregulated the allergic reaction by reducing transendothelial migration of T cells but not other immune cells (neutrophils and mast cells). Moreover, intravenously infused sDC-HIL bound to EC in blood vessels of oxazolone-challenged skin in a scattered and patchy pattern, and intravital microscopic analysis revealed that blood-circulating T cells firmly adhere to DC-HIL-treated endothelia. This regulatory property of sDC-HIL requires syndecan-4 expression by both EC and T cells. Our findings indicate that the DC-HIL/syndecan-4 pathway mediates a cross-talk between T cells and ECs, regulating the cutaneous immune response by preventing extravasation of activated T cells into inflamed skin.


Asunto(s)
Activación de Linfocitos , Sindecano-4 , Animales , Células Endoteliales/metabolismo , Proteínas del Ojo/metabolismo , Glicoproteínas de Membrana/metabolismo , Ratones , Oxazolona , Piel , Sindecano-4/metabolismo , Linfocitos T
14.
PLoS Biol ; 19(10): e3001085, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34669700

RESUMEN

Male germ cell (GC) production is a metabolically driven and apoptosis-prone process. Here, we show that the glucose-sensing transcription factor (TF) MAX-Like protein X (MLX) and its binding partner MondoA are both required for male fertility in the mouse, as well as survival of human tumor cells derived from the male germ line. Loss of Mlx results in altered metabolism as well as activation of multiple stress pathways and GC apoptosis in the testes. This is concomitant with dysregulation of the expression of male-specific GC transcripts and proteins. Our genomic and functional analyses identify loci directly bound by MLX involved in these processes, including metabolic targets, obligate components of male-specific GC development, and apoptotic effectors. These in vivo and in vitro studies implicate MLX and other members of the proximal MYC network, such as MNT, in regulation of metabolism and differentiation, as well as in suppression of intrinsic and extrinsic death signaling pathways in both spermatogenesis and male germ cell tumors (MGCTs).


Asunto(s)
Apoptosis , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Glucosa/metabolismo , Espermatogénesis , Estrés Fisiológico , Animales , Secuencia de Bases , Supervivencia Celular , Exones/genética , Fertilidad , Eliminación de Gen , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Marcación de Gen , Metabolismo de los Lípidos , Masculino , Ratones Noqueados , Modelos Biológicos , Neoplasias de Células Germinales y Embrionarias/patología , Análisis de Componente Principal , ARN/genética , ARN/metabolismo , Proteínas Represoras/metabolismo , Reproducción , Células de Sertoli/metabolismo , Espermatogénesis/genética , Espermatozoides/metabolismo , Neoplasias Testiculares/patología , Testículo/metabolismo , Factores de Transcripción/metabolismo , Transcripción Genética
15.
ChemSusChem ; 14(21): 4613-4614, 2021 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-34661970

RESUMEN

Invited for this month's cover are the groups of Prof. Vijay Ramani and Prof. Rohan Mishra at Washington University in St. Louis and their collaborators at Oak Ridge National Laboratory. The Full Paper itself is available at 10.1002/cssc.202101341.

16.
Proc Natl Acad Sci U S A ; 118(40)2021 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-34593643

RESUMEN

The performance of fixed-gas unitized regenerative fuel cells (FG-URFCs) are limited by the bifunctional activity of the oxygen electrocatalyst. It is essential to have a good bifunctional oxygen electrocatalyst which can exhibit high activity for oxygen evolution reaction (OER) and oxygen reduction reaction (ORR). In this regard, Pt-Pb2Ru2O7-x is synthesized by depositing Pt on Pb2Ru2O7-x wherein Pt individually exhibits high ORR while Pb2Ru2O7-x shows high OER and moderate ORR activity. Pt-Pb2Ru2O7-x exhibits higher OER (η@10mAcm-2 = 0.25 ± 0.01 V) and ORR (η@-3mAcm-2 = -0.31 ± 0.02 V) activity in comparison to benchmark OER (IrO2, η@10mAcm-2 = 0.35 ± 0.02 V) and ORR (Pt/C, η@-3mAcm-2 = -0.33 ± 0.02 V) electrocatalysts, respectively. Pt-Pb2Ru2O7-x shows a lower bifunctionality index (η@10mAcm-2, OER- η@-3mAcm-2, ORR) of 0.56 V with more symmetric OER-ORR activity profile than both Pt (>1.0 V) and Pb2Ru2O7-x (0.69 V) making it more useful for the AEM (anion exchange membrane) URFC or metal-air battery applications. FG-URFC tested with Pt-Pb2Ru2O7-x and Pt/C as bifunctional oxygen electrocatalyst and bifunctional hydrogen electrocatalyst, respectively, yields a mass-specific current density of 715 ± 11 A/gcat-1 at 1.8 V and 56 ± 2 A/gcat-1 at 0.9 V under electrolyzer mode and fuel-cell mode, respectively. The FG-URFC shows a round-trip efficiency of 75% at 0.1 A/cm-2, underlying improvement in AEM FG-URFC electrocatalyst design.

17.
Genome Biol ; 22(1): 279, 2021 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-34579774

RESUMEN

BACKGROUND: Mammalian development is associated with extensive changes in gene expression, chromatin accessibility, and nuclear structure. Here, we follow such changes associated with mouse embryonic stem cell differentiation and X inactivation by integrating, for the first time, allele-specific data from these three modalities obtained by high-throughput single-cell RNA-seq, ATAC-seq, and Hi-C. RESULTS: Allele-specific contact decay profiles obtained by single-cell Hi-C clearly show that the inactive X chromosome has a unique profile in differentiated cells that have undergone X inactivation. Loss of this inactive X-specific structure at mitosis is followed by its reappearance during the cell cycle, suggesting a "bookmark" mechanism. Differentiation of embryonic stem cells to follow the onset of X inactivation is associated with changes in contact decay profiles that occur in parallel on both the X chromosomes and autosomes. Single-cell RNA-seq and ATAC-seq show evidence of a delay in female versus male cells, due to the presence of two active X chromosomes at early stages of differentiation. The onset of the inactive X-specific structure in single cells occurs later than gene silencing, consistent with the idea that chromatin compaction is a late event of X inactivation. Single-cell Hi-C highlights evidence of discrete changes in nuclear structure characterized by the acquisition of very long-range contacts throughout the nucleus. Novel computational approaches allow for the effective alignment of single-cell gene expression, chromatin accessibility, and 3D chromosome structure. CONCLUSIONS: Based on trajectory analyses, three distinct nuclear structure states are detected reflecting discrete and profound simultaneous changes not only to the structure of the X chromosomes, but also to that of autosomes during differentiation. Our study reveals that long-range structural changes to chromosomes appear as discrete events, unlike progressive changes in gene expression and chromatin accessibility.


Asunto(s)
Diferenciación Celular/genética , Expresión Génica , Células Madre Embrionarias de Ratones/metabolismo , Inactivación del Cromosoma X , Alelos , Animales , Ciclo Celular , Línea Celular , Núcleo Celular/genética , Femenino , Genoma , Masculino , Ratones , RNA-Seq , Análisis de la Célula Individual , Cromosoma X/química
18.
Proc Natl Acad Sci U S A ; 118(34)2021 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-34417296

RESUMEN

Organic and organometallic reactants in aqueous electrolytes, being composed of earth-abundant elements, are promising redox active candidates for cost-effective organic redox flow batteries (ORFBs). Various compounds of ferrocene and methyl viologen have been examined as promising redox actives for this application. Herein, we examined the influence of the electrolyte pH and the salt anion on model redox active organic cations, bis((3-trimethylammonio) propyl)- ferrocene dichloride (BTMAP-Fc) and bis(3-trimethylammonio) propyl viologen tetrachloride (BTMAP-Vi), which have exhibited excellent cycling stability and capacity retention at ≥1.00 M concentration [E. S. Beh, et al. ACS Energy Lett. 2, 639-644 (2017)]. We examined the solvation shell around BTMAP-Fc and BTMAP-Vi at acidic and neutral pH with SO42-, Cl-, and CH3SO3- counterions and elucidated their impact on cation diffusion coefficient, first electron transfer rate constant, and thereby the electrochemical Thiele modulus. The electrochemical Thiele modulus was found to be exponentially correlated with the solvent reorganizational energy (λ) in both neutral and acidic pH. Thus, λ is proposed as a universal descriptor and selection criteria for organic redox flow battery electrolyte compositions. In the specific case of the BTMAP-Fc/BTMAP-Vi ORFB, low pH electrolytes with methanesulfonate or chloride counterions were identified as offering the best balance of transport and kinetic requirements.

19.
ChemSusChem ; 14(21): 4680-4689, 2021 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-34383996

RESUMEN

Clusters of nitrogen- and carbon-coordinated transition metals dispersed in a carbon matrix (e. g., Fe-N-C) have emerged as an inexpensive class of electrocatalysts for the oxygen reduction reaction (ORR). Here, it was shown that optimizing the interaction between the nitrogen-coordinated transition metal clusters embedded in a more stable and corrosion-resistant carbide matrix yielded an ORR electrocatalyst with enhanced activity and stability compared to Fe-N-C catalysts. Utilizing first-principles calculations, an electrostatics-based descriptor of catalytic activity was identified, and nitrogen-coordinated iron (FeN4 ) clusters embedded in a TiC matrix were predicted to be an efficient platinum-group metal (PGM)-free ORR electrocatalyst. Guided by theory, selected catalyst formulations were synthesized, and it was demonstrated that the experimentally observed trends in activity fell exactly in line with the descriptor-derived theoretical predictions. The Fe-N-TiC catalyst exhibited enhanced activity (20 %) and durability (3.5-fold improvement) compared to a traditional Fe-N-C catalyst. It was posited that the electrostatics-based descriptor provides a powerful platform for the design of active and stable PGM-free electrocatalysts and heterogenous single-atom catalysts for other electrochemical reactions.

20.
Immunohorizons ; 5(8): 659-674, 2021 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-34429343

RESUMEN

The TLR4-interacting SPA4 peptide suppresses inflammation. We assessed the structural and physicochemical properties and binding of SPA4 peptide to TLR4-MD2. We also studied the changes at the whole transcriptome level, cell morphology, viability, secreted cytokines and chemokines, and cell influx in cell systems and mouse models challenged with LPS and treated with SPA4 peptide. Our results demonstrated that the SPA4 peptide did not alter the cell viability and size and only moderately affected the transcriptome of the cells. Computational docking and rendering suggested that the SPA4 peptide intercalates with LPS-induced TLR4-MD2 complex. Results with alanine mutations of D-2 amino acid and NYTXXXRG-12-19 motif of SPA4 peptide suggested their role in binding to TLR4 and in reducing the cytokine response against LPS stimulus. Furthermore, therapeutically administered SPA4 peptide significantly suppressed the secreted levels of cytokines and chemokines in cells and bronchoalveolar lavage fluids of LPS-challenged mice. The results suggest that the SPA4 peptide intercalates with LPS-induced TLR4 complex and signaling for the suppression of inflammation.


Asunto(s)
Antiinflamatorios/farmacología , Inflamación/prevención & control , Fragmentos de Péptidos/farmacología , Proteína A Asociada a Surfactante Pulmonar/metabolismo , Receptor Toll-Like 4/metabolismo , Secuencia de Aminoácidos , Animales , Antiinflamatorios/metabolismo , Línea Celular , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/genética , Citocinas/metabolismo , Células Dendríticas/efectos de los fármacos , Células Dendríticas/metabolismo , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Células HEK293 , Humanos , Inflamación/genética , Inflamación/metabolismo , Lipopolisacáridos/farmacología , Ratones Endogámicos C57BL , Mutación , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/metabolismo , Unión Proteica , Proteína A Asociada a Surfactante Pulmonar/química , Proteína A Asociada a Surfactante Pulmonar/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA